No Arabic abstract
We study $J$-kink domain walls in $D=4$ massive $mathbb{C}P^1$ sigma model. The domain walls are not static but stationary, since they rotate in an internal $S^1$ space with a frequency $omega$ and a momentum ${bf k}$ along the domain wall. They are characterized by a conserved current $J_mu = (Q,{bf J})$, and are classified into magnetic ($J^2 < 0$), null ($J^2=0$), and electric ($J^2 > 0$) types. Under a natural assumption that a low energy effective action of the domain wall is dual to the $D=4$ DBI action for a membrane, we are lead to a coincidence between the $J$-kink domain wall and the membrane with constant magnetic field $B$ and electric field ${bf E}$. We also find that $(Q, {bf J}, omega, {bf k})$ is dual to $(B, {bf E}, H, {bf D})$ with $H$ and ${bf D}$ being a magnetizing field and a displacement field, respectively.
We show that spectral walls are common phenomena in the dynamics of kinks in (1+1) dimensions. They occur in models based on two or more scalar fields with a nonempty Bogomolnyi-Prasam-Sommerfield (BPS) sector, hosting two zero modes, where they are one of the main factors governing the soliton dynamics. We also show that spectral walls appear as singularities of the dynamical vibrational moduli space.
We derive four dimensional $mathcal{N}=1$ supersymmetric effective theory from ten dimensional non-Abelian Dirac-Born-Infeld action compactified on a six dimensional torus with magnetic fluxes on the D-branes. For the ten dimensional action, we use a symmetrized trace prescription and focus on the bosonic part up to $mathcal{O}(F^4)$. In the presence of the supersymmetry, four dimensional chiral fermions can be obtained via index theorem. The matter K{a}hler metric depends on closed string moduli and the fluxes but is independent of flavor, and will be always positive definite if an induced RR charge of the D-branes on which matters are living are positive. We read the superpotential from an F-term scalar quartic interaction derived from the ten dimensional action and the contribution of the matter K{a}hler metric to the scalar potential which we derive turns out to be consistent with the supergravity formulation.
We study configurations of intersecting domain walls in a Wess-Zumino model with three vacua. We introduce a volume-preserving flow and show that its static solutions are configurations of intersecting domain walls that form double bubbles, that is, minimal area surfaces which enclose and separate two prescribed volumes. To illustrate this field theory approach to double bubbles, we use domain walls to reconstruct the phase diagram for double bubbles in the flat square two-torus and also construct all known examples of double bubbles in the flat cubic three-torus.
Solitons formation through classical dynamics of two scalar fields with the potential having a saddle point and one minimum in (2+1)-space-time is discussed. We show that under certain conditions in the early Universe both domain walls and strings can be formed even if scalar fields are inflaton ones.
We present analytical solutions of BPS domain walls in the Einstein-Maxwell flux landscape. We also remove the smeared-branes approximation and write down solutions with localized branes. In these solutions the domain walls induce strong (if not infinite) warping.