No Arabic abstract
We study configurations of intersecting domain walls in a Wess-Zumino model with three vacua. We introduce a volume-preserving flow and show that its static solutions are configurations of intersecting domain walls that form double bubbles, that is, minimal area surfaces which enclose and separate two prescribed volumes. To illustrate this field theory approach to double bubbles, we use domain walls to reconstruct the phase diagram for double bubbles in the flat square two-torus and also construct all known examples of double bubbles in the flat cubic three-torus.
We present analytical solutions of BPS domain walls in the Einstein-Maxwell flux landscape. We also remove the smeared-branes approximation and write down solutions with localized branes. In these solutions the domain walls induce strong (if not infinite) warping.
We study $SU(N_c)$ gauge theories with Dirac fermions in representations ${cal{R}}$ of nonzero $N$-ality, coupled to axions. These theories have an exact discrete chiral symmetry, which has a mixed t Hooft anomaly with general baryon-color-flavor backgrounds, called the BCF anomaly in arXiv:1909.09027. The infrared theory also has an emergent $mathbb Z_{N_c}^{(1)}$ $1$-form center symmetry. We show that the BCF anomaly is matched in the infrared by axion domain walls. We argue that $mathbb Z_{N_c}^{(1)}$ is spontaneously broken on axion domain walls, so that nonzero $N$-ality Wilson loops obey the perimeter law and probe quarks are deconfined on the walls. We give further support to our conclusion by using a calculable small-circle compactification to study the multi-scale structure of the axion domain walls and the microscopic physics of deconfinement on their worldvolume.
We show that axion models with the domain wall number $k$ in $(3+1)$ dimensions, i.e., periodic scalar field theories admitting $k$ axion domain walls, exhibit an emergent ${mathbb Z}_k$ 3-form symmetry for $k >1$ in addition to a conventional ${mathbb Z}_k$ 0-form symmetry. The emergent 3-form symmetry is explicitly shown by establishing a low-energy dual transformation between the scalar field theory and a 3-form gauge theory. We further argue that the emergent 3-form symmetry is spontaneously broken, and the breaking pattern is so-called the type-B spontaneous symmetry breaking. We discuss similar and different points between the phase admitting the domain walls and topologically ordered phases.
We study $J$-kink domain walls in $D=4$ massive $mathbb{C}P^1$ sigma model. The domain walls are not static but stationary, since they rotate in an internal $S^1$ space with a frequency $omega$ and a momentum ${bf k}$ along the domain wall. They are characterized by a conserved current $J_mu = (Q,{bf J})$, and are classified into magnetic ($J^2 < 0$), null ($J^2=0$), and electric ($J^2 > 0$) types. Under a natural assumption that a low energy effective action of the domain wall is dual to the $D=4$ DBI action for a membrane, we are lead to a coincidence between the $J$-kink domain wall and the membrane with constant magnetic field $B$ and electric field ${bf E}$. We also find that $(Q, {bf J}, omega, {bf k})$ is dual to $(B, {bf E}, H, {bf D})$ with $H$ and ${bf D}$ being a magnetizing field and a displacement field, respectively.
We present exact solutions to Vasilievs bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in spacetime, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (anti) de Sitter space. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.