Do you want to publish a course? Click here

The UV, Lyman-alpha, and dark matter halo properties of high redshift galaxies

140   0   0.0 ( 0 )
 Added by Jeremy Blaizot
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the properties of high-redshift Lyman-alpha emitters (LAE), and their link with the Lyman-Break galaxy population (LBG), using a semi-analytic model of galaxy formation that takes into account resonant scattering of Lya photons in gas outflows. We can reasonably reproduce the abundances of LAEs and LBGs from redshift 3 to 7, as well as most UV LFs of LAEs. The stronger dust attenuation for (resonant) Lya photons compared to UV continuum photons in bright LBGs provides a natural interpretation to the increase of the LAE fraction in LBG samples, X_LAE, towards fainter magnitudes. The redshift evolution of X_LAE seems however very sensitive to UV magnitudes limits and EW cuts. In spite of the apparent good match between the statistical properties predicted by the model and the observations, we find that the tail of the Lya equivalent width distribution (EW > 100 A) cannot be explained by our model, and we need to invoke additional mechanisms. We find that LAEs and LBGs span a very similar dynamical range, but bright LAEs are about 4 times rarer than LBGs in massive halos. Moreover, massive halos mainly contain weak LAEs in our model, which might introduce a bias towards low-mass halos in surveys which select sources with high EW cuts. Overall, our results are consistent with the idea that LAEs and LBGs make a very similar galaxy population. Their apparent differences seem mainly due to EW selections, UV detection limits, and a decreasing Lya-to-UV escape fraction ratio in high SFR galaxies.



rate research

Read More

Lyman-alpha (Ly{alpha}) photons from ionizing sources and cooling radiation undergo a complex resonant scattering process that generates unique spectral signatures in high-redshift galaxies. We present a detailed Ly{alpha} radiative transfer study of a cosmological zoom-in simulation from the Feedback In Realistic Environments (FIRE) project. We focus on the time, spatial, and angular properties of the Ly{alpha} emission over a redshift range of z = 5-7, after escaping the galaxy and being transmitted through the intergalactic medium (IGM). Over this epoch, our target galaxy has an average stellar mass of $M_{rm star} approx 5 times 10^8 {rm M}_odot$. We find that many of the interesting features of the Ly{alpha} line can be understood in terms of the galaxys star formation history. The time variability, spatial morphology, and anisotropy of Ly{alpha} properties are consistent with current observations. For example, the rest frame equivalent width has a ${rm EW}_{{rm Ly}alpha,0} > 20 {rm AA}$ duty cycle of 62% with a non-negligible number of sightlines with $> 100 {rm AA}$, associated with outflowing regions of a starburst with greater coincident UV continuum absorption, as these conditions generate redder, narrower (or single peaked) line profiles. The lowest equivalent widths correspond to cosmological filaments, which have little impact on UV continuum photons but efficiently trap Ly{alpha} and produce bluer, broader lines with less transmission through the IGM. We also show that in dense self-shielding, low-metallicity filaments and satellites Ly{alpha} radiation pressure can be dynamically important. Finally, despite a significant reduction in surface brightness with increasing redshift, Ly{alpha} detections and spectroscopy of high-$z$ galaxies with the upcoming James Webb Space Telescope is feasible.
244 - Kim K. Nilsson 2009
We show that with the simple assumption of no correlation between the Ly-alpha equivalent width and the UV luminosity of a galaxy, the observed distribution of high redshift galaxies in an equivalent width - absolute UV magnitude plane can be reproduced. We further show that there is no dependence between Ly-alpha equivalent width and Ly-alpha luminosity in a sample of Ly-alpha emitters. The test was expanded to Lyman-break galaxies and again no dependence was found. Simultaneously, we show that a recently proposed lack of large equivalent width, UV bright galaxies (Ando et al. 2006) can be explained by a simple observational effect, based on too small survey volumes.
486 - Daniel Schaerer 2014
I provide an overview about star-forming galaxies at high redshift and their physical properties. Starting from the populations of Ly-$alpha$ emitters and Lyman break galaxies, I summarize their common features and distinction. Then I summarize recent insight onto their physical properties gained from SED models including nebular emission, and various implications from these studies on the properties of star-formation at high redshift. Finally, I present new results and an overview on the dust content and UV attenuation of $z>6$ galaxies obtained from IRAM and ALMA observations.
Ly$alpha$ photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Ly$alpha$ emission around galaxies. Such low surface brightness Ly$alpha$ halos (LAHs) have been detected by stacking Ly$alpha$ images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine $z=3.1$ Lyman-Alpha Emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Ly$alpha$ surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Ly$alpha$ surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Ly$alpha$ emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultra-violet (UV) halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.
We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1sigma) of ~1 x 10^-19 erg s^-1 cm^-2 arcsec^-2 in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m_AB >~ 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While 5 of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is just due to insufficient S/N. Ly alpha haloes therefore appear to be (nearly) ubiquitous even for low-mass (~10^8-10^9 M_sun) star-forming galaxies at z>3. We decompose the Ly alpha emission of each object into a compact `continuum-like and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor ~5, than Ly alpha haloes around low-redshift star-forming galaxies. Between ~40% and >90% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا