Do you want to publish a course? Click here

On the dependence between UV luminosity and Lyman-alpha equivalent width in high redshift galaxies

230   0   0.0 ( 0 )
 Added by Kim Nilsson
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that with the simple assumption of no correlation between the Ly-alpha equivalent width and the UV luminosity of a galaxy, the observed distribution of high redshift galaxies in an equivalent width - absolute UV magnitude plane can be reproduced. We further show that there is no dependence between Ly-alpha equivalent width and Ly-alpha luminosity in a sample of Ly-alpha emitters. The test was expanded to Lyman-break galaxies and again no dependence was found. Simultaneously, we show that a recently proposed lack of large equivalent width, UV bright galaxies (Ando et al. 2006) can be explained by a simple observational effect, based on too small survey volumes.



rate research

Read More

We explore the properties of high-redshift Lyman-alpha emitters (LAE), and their link with the Lyman-Break galaxy population (LBG), using a semi-analytic model of galaxy formation that takes into account resonant scattering of Lya photons in gas outflows. We can reasonably reproduce the abundances of LAEs and LBGs from redshift 3 to 7, as well as most UV LFs of LAEs. The stronger dust attenuation for (resonant) Lya photons compared to UV continuum photons in bright LBGs provides a natural interpretation to the increase of the LAE fraction in LBG samples, X_LAE, towards fainter magnitudes. The redshift evolution of X_LAE seems however very sensitive to UV magnitudes limits and EW cuts. In spite of the apparent good match between the statistical properties predicted by the model and the observations, we find that the tail of the Lya equivalent width distribution (EW > 100 A) cannot be explained by our model, and we need to invoke additional mechanisms. We find that LAEs and LBGs span a very similar dynamical range, but bright LAEs are about 4 times rarer than LBGs in massive halos. Moreover, massive halos mainly contain weak LAEs in our model, which might introduce a bias towards low-mass halos in surveys which select sources with high EW cuts. Overall, our results are consistent with the idea that LAEs and LBGs make a very similar galaxy population. Their apparent differences seem mainly due to EW selections, UV detection limits, and a decreasing Lya-to-UV escape fraction ratio in high SFR galaxies.
214 - Andrew W. Zirm 2009
We have obtained the first constraints on extended Ly-alpha emission at z ~ 1 in a sample of five radio galaxies. We detect Ly-alpha emission from four of the five galaxies. The Ly-alpha luminosities range from 0.1 - 4 times 10^43 erg/s and are much smaller than those observed for halos around higher redshift radio galaxies. If the z ~ 1 radio galaxies are the descendents the z >~ 2 radio galaxies, then their Ly-alpha luminosities evolve strongly with redshift as ~(1+z)^5. There do not appear to be strong correlations between other parameters, such as radio power, suggesting that this observed evolution is real and not an observational artifact or secondary correlation. We speculate that this evolution of luminous halos may be due to gas depletion (as gas cools, settles, and forms stars) accompanied by an overall rise in the mean gas temperature and a decrease in specific star-formation rate in and around these massive galaxies.
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ~ 3 to investigate systematically the relationship between Lya emission and stellar populations. Lya equivalent widths (EW) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lya emission, where we designate the former group (EW > 20 AA) as Lya emitters (LAEs) and the latter group (EW < 20 AA) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lya equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lya emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lya emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lya emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lya photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
131 - Vithal Tilvi 2010
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging search for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.
162 - Masataka Ando 2006
We report a deficiency of luminous Lyman break galaxies (LBGs) with a large rest-frame equivalent width (EW_rest) of Lyman-alpha emission at z~5-6. Combining our spectroscopic sample of LBGs at z~5 and those from the literature, we found that luminous LBGs at z~5-6 generally show weak Lyman-alpha emissions, while faint LBGs show a wide range of Lyman-alpha EW_rest and tend to have strong (EW_rest >20A) Lyman-alpha emissions; i.e., there is a deficiency of strong Lyman-alpha emission in luminous LBGs. There seems to be a threshold UV luminosity for the deficiency; it is M_1400 = -21.5 ~ -21.0 mag, which is close to or somewhat brighter than the M* of the UV luminosity function at z~5 and 6. Since the large EW_rest of Lyman-alpha emission can be seen among the faint LBGs, the fraction of Lyman-alpha emitters in LBGs may change rather abruptly with the UV luminosity. If the weakness of Lyman-alpha emission is due to dust absorption, the deficiency suggests that luminous LBGs at z=5-6 tend to be in dusty and more chemically evolved environments and started star formation earlier than faint ones, though other causes cannot be ruled out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا