Do you want to publish a course? Click here

On the Diffuse Lyman-alpha Halo Around Lyman-alpha Emitting Galaxies

150   0   0.0 ( 0 )
 Added by Ethan Lake
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ly$alpha$ photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Ly$alpha$ emission around galaxies. Such low surface brightness Ly$alpha$ halos (LAHs) have been detected by stacking Ly$alpha$ images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine $z=3.1$ Lyman-Alpha Emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Ly$alpha$ surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Ly$alpha$ surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Ly$alpha$ emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultra-violet (UV) halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.



rate research

Read More

We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging, two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.
167 - Y. Matsuda 2012
Using stacks of Ly-a images of 2128 Ly-a emitters (LAEs) and 24 protocluster UV-selected galaxies (LBGs) at z=3.1, we examine the surface brightness profiles of Ly-a haloes around high-z galaxies as a function of environment and UV luminosity. We find that the slopes of the Ly-a radial profiles become flatter as the Mpc-scale LAE surface densities increase, but they are almost independent of the central UV luminosities. The characteristic exponential scale lengths of the Ly-a haloes appear to be proportional to the square of the LAE surface densities (r(Lya) propto Sigma(LAE)^2). Including the diffuse, extended Ly-a haloes, the rest-frame Ly-a equivalent width of the LAEs in the densest regions approaches EW_0(Lya) ~ 200 A, the maximum value expected for young (< 10^7 yr) galaxies. This suggests that Ly-a photons formed via shock compression by gas outflows or cooling radiation by gravitational gas inflows may partly contribute to illuminate the Ly-a haloes; however, most of their Ly-a luminosity can be explained by photo-ionisation by ionising photons or scattering of Ly-a photons produced in HII regions in and around the central galaxies. Regardless of the source of Ly-a photons, if the Ly-a haloes trace the overall gaseous structure following the dark matter distributions, it is not surprising that the Ly-a spatial extents depend more strongly on the surrounding Mpc-scale environment than on the activities of the central galaxies.
We present a sample of 33 spectroscopically confirmed z ~ 3.1 Ly$alpha$-emitting galaxies (LAEs) in the Cosmological Evolution Survey (COSMOS) field. This paper details the narrow-band survey we conducted to detect the LAE sample, the optical spectroscopy we performed to confirm the nature of these LAEs, and a new near-infrared spectroscopic detection of the [O III] 5007 AA line in one of these LAEs. This detection is in addition to two [O III] detections in two z ~ 3.1 LAEs we have reported on previously (McLinden et al 2011). The bulk of the paper then presents detailed constraints on the physical characteristics of the entire LAE sample from spectral energy distribution (SED) fitting. These characteristics include mass, age, star-formation history, dust content, and metallicity. We also detail an approach to account for nebular emission lines in the SED fitting process - wherein our models predict the strength of the [O III] line in an LAE spectrum. We are able to study the success of this prediction because we can compare the model predictions to our actual near-infrared observations both in galaxies that have [O III] detections and those that yielded non-detections. We find a median stellar mass of 6.9 $times$ 10$^8$ M$_{odot}$ and a median star formation rate weighted stellar population age of 4.5 $times$ 10$^6$ yr. In addition to SED fitting, we quantify the velocity offset between the [O III] and Ly$alpha$ lines in the galaxy with the new [O III] detection, finding that the Ly$alpha$ line is shifted 52 km s$^{-1}$ redwards of the [O III] line, which defines the systemic velocity of the galaxy.
163 - Zheng Zheng 2010
Lyman-alpha (Lya) photons that escape the interstellar medium of star-forming galaxies may be resonantly scattered by neutral hydrogen atoms in the circumgalactic and intergalactic media, thereby increasing the angular extent of the galaxys Lya emission. We present predictions of this extended, low surface brightness Lya emission based on radiative transfer modeling in a cosmological reionization simulation. The extended emission can be detected from stacked narrowband images of Lya emitters (LAEs) or of Lyman break galaxies (LBGs). Its average surface brightness profile has a central cusp, then flattens to an approximate plateau beginning at an inner characteristic scale below ~0.2 Mpc (comoving), then steepens again beyond an outer characteristic scale of ~1 Mpc. The inner scale marks the transition from scattered light of the central source to emission from clustered sources, while the outer scale marks the spatial extent of scattered emission from these clustered sources. Both scales tend to increase with halo mass, UV luminosity, and observed Lya luminosity. The extended emission predicted by our simulation is already within reach of deep narrowband photometry using large ground-based telescopes. Such observations would test radiative transfer models of emission from LAEs and LBGs, and they would open a new window on the circumgalactic environment of high-redshift star-forming galaxies.
194 - Y. Matsuda 2009
We present the discovery of a candidate of giant radio-quiet Lyman-alpha (Lya) blob (RQLAB) in a large-scale structure around a high-redshift radio galaxy (HzRG) lying in a giant Lya halo, B3 J2330+3927 at redshift z=3.087. We obtained Lya imaging around B3 J2330+3927 with Subaru/Suprime-Cam to search for Lya emitters (LAEs) and absorbers (LAAs) at redshift z=3.09+-0.03. We detected candidate 127 LAEs and 26 LAAs in the field of view of 31 x 24. We found that B3 J2330+3927 is surrounded by a 130 kpc Lya halo and a large-scale (60 x 20 comoving Mpc) filamentary structure. The large-scale structure contains one prominent local density peak with an overdensity of greater than 5, which is 8 (15 comoving Mpc) away from B3 J2330+3927. In this peak, we discovered a candidate 100 kpc RQLAB. The existence of both types of Lya nebulae in the same large-scale structure suggests that giant Lya nebulae need special large-scale environments to form. On smaller scales, however, the location of B3 J2330+3927 is not a significant local density peak in this structure, in contrast to the RQLAB. There are two possible interpretations of the difference of the local environments of these two Lya nebulae. Firstly, RQLAB may need a prominent (delta ~ 5) density peak of galaxies to form through intense star-bursts due to frequent galaxy interactions/mergers and/or continuous gas accretion in an overdense environment. On the other hand, Lya halo around HzRG may not always need a prominent density peak to form if the surrounding Lya halo is mainly powered by its radio and AGN activities. Alternatively, both RQLAB and Lya halo around HzRG may need prominent density peaks to form but we could not completely trace the density of galaxies because we missed evolved and dusty galaxies in this survey.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا