Do you want to publish a course? Click here

Particle dark matter searches outside the Local Group

191   0   0.0 ( 0 )
 Added by Marco Regis
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

If dark matter (DM) is composed by particles which are non-gravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of non-gravitational signals with low-redshift gravitational probes. This method allows to enhance signal-to-noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT gamma-ray maps. We show that this technique is more sensitive than other extragalactic gamma-ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and gamma-ray production mechanism. This solicits further data collection and dedicated analyses.



rate research

Read More

Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call dark matter is indeed formed by elementary particles.
We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.
This white paper describes the basic idea for indirect dark matter searches using antideuterons. Low energy antideuterons produced by dark matter annihilations/decays provide an attractive dark matter signature, due to the low astrophysical background. The current and future experiments have a strong potential to detect antideuterons from dark matter. They are complementary not only with each other, but also with other dark matter searches.
77 - Laura Baudis 2015
One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultra low-background detectors, or indirectly, via secondary radiation produced when they pair annihilate. They could also be generated at particle colliders such as the LHC, where associated particles produced in the same process are to be detected. After a brief motivation and an introduction to the phenomenology of particle dark matter detection, I will discuss the most promising experimental techniques to search for axions and WIMPs, addressing their current and future science reach, as well as their complementarity.
Direct detection (DD) of dark matter (DM) candidates in the $lesssim$10 GeV mass range is very sensitive to the tail of their velocity distribution. The important quantity is the maximum WIMP speed in the observers rest frame, i.e. in average the sum of the local Galactic escape speed $v_{rm esc}$ and of the circular velocity of the Sun $v_c$. While the latter has been receiving continuous attention, the former is more difficult to constrain. The RAVE Collaboration has just released a new estimate of $v_{rm esc}$ (Piffl {em et al.}, 2014 --- P14) that supersedes the previous one (Smith {em et al.}, 2007), which is of interest in the perspective of reducing the astrophysical uncertainties in DD. Nevertheless, these new estimates cannot be used blindly as they rely on assumptions in the dark halo modeling which induce tight correlations between the escape speed and other local astrophysical parameters. We make a self-consistent study of the implications of the RAVE results on DD assuming isotropic DM velocity distributions, both Maxwellian and ergodic. Taking as references the experimental sensitivities currently achieved by LUX, CRESST-II, and SuperCDMS, we show that: (i) the exclusion curves associated with the best-fit points of P14 may be more constraining by up to $sim 40$% with respect to standard limits, because the underlying astrophysical correlations induce a larger local DM density; (ii) the corresponding relative uncertainties inferred in the low WIMP mass region may be moderate, down to 10-15% below 10 GeV. We finally discuss the level of consistency of these results with other independent astrophysical constraints. This analysis is complementary to others based on rotation curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا