Do you want to publish a course? Click here

Large Dimensional Analysis of Robust M-Estimators of Covariance with Outliers

152   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

A large dimensional characterization of robust M-estimators of covariance (or scatter) is provided under the assumption that the dataset comprises independent (essentially Gaussian) legitimate samples as well as arbitrary deterministic samples, referred to as outliers. Building upon recent random matrix advances in the area of robust statistics, we specifically show that the so-called Maronna M-estimator of scatter asymptotically behaves similar to well-known random matrices when the population and sample sizes grow together to infinity. The introduction of outliers leads the robust estimator to behave asymptotically as the weighted sum of the sample outer products, with a constant weight for all legitimate samples and different weights for the outliers. A fine analysis of this structure reveals importantly that the propensity of the M-estimator to attenuate (or enhance) the impact of outliers is mostly dictated by the alignment of the outliers with the inverse population covariance matrix of the legitimate samples. Thus, robust M-estimators can bring substantial benefits over more simplistic estimators such as the per-sample normalized version of the sample covariance matrix, which is not capable of differentiating the outlying samples. The analysis shows that, within the class of Maronnas estimators of scatter, the Huber estimator is most favorable for rejecting outliers. On the contrary, estimators more similar to Tylers scale invariant estimator (often preferred in the literature) run the risk of inadvertently enhancing some outliers.



rate research

Read More

Robust estimators of large covariance matrices are considered, comprising regularized (linear shrinkage) modifications of Maronnas classical M-estimators. These estimators provide robustness to outliers, while simultaneously being well-defined when the number of samples does not exceed the number of variables. By applying tools from random matrix theory, we characterize the asymptotic performance of such estimators when the numbers of samples and variables grow large together. In particular, our results show that, when outliers are absent, many estimators of the regularized-Maronna type share the same asymptotic performance, and for these estimators we present a data-driven method for choosing the asymptotically optimal regularization parameter with respect to a quadratic loss. Robustness in the presence of outliers is then studied: in the non-regularized case, a large-dimensional robustness metric is proposed, and explicitly computed for two particular types of estimators, exhibiting interesting differences depending on the underlying contamination model. The impact of outliers in regularized estimators is then studied, with interesting differences with respect to the non-regularized case, leading to new practical insights on the choice of particular estimators.
The classical asymptotic theory for parametric $M$-estimators guarantees that, in the limit of infinite sample size, the excess risk has a chi-square type distribution, even in the misspecified case. We demonstrate how self-concordance of the loss allows to characterize the critical sample size sufficient to guarantee a chi-square type in-probability bound for the excess risk. Specifically, we consider two classes of losses: (i) self-concordant losses in the classical sense of Nesterov and Nemirovski, i.e., whose third derivative is uniformly bounded with the $3/2$ power of the second derivative; (ii) pseudo self-concordant losses, for which the power is removed. These classes contain losses corresponding to several generalized linear models, including the logistic loss and pseudo-Huber losses. Our basic result under minimal assumptions bounds the critical sample size by $O(d cdot d_{text{eff}}),$ where $d$ the parameter dimension and $d_{text{eff}}$ the effective dimension that accounts for model misspecification. In contrast to the existing results, we only impose local assumptions that concern the population risk minimizer $theta_*$. Namely, we assume that the calibrated design, i.e., design scaled by the square root of the second derivative of the loss, is subgaussian at $theta_*$. Besides, for type-ii losses we require boundedness of a certain measure of curvature of the population risk at $theta_*$.Our improved result bounds the critical sample size from above as $O(max{d_{text{eff}}, d log d})$ under slightly stronger assumptions. Namely, the local assumptions must hold in the neighborhood of $theta_*$ given by the Dikin ellipsoid of the population risk. Interestingly, we find that, for logistic regression with Gaussian design, there is no actual restriction of conditions: the subgaussian parameter and curvature measure remain near-constant over the Dikin ellipsoid. Finally, we extend some of these results to $ell_1$-penalized estimators in high dimensions.
This paper studies the problem of accurately recovering a sparse vector $beta^{star}$ from highly corrupted linear measurements $y = X beta^{star} + e^{star} + w$ where $e^{star}$ is a sparse error vector whose nonzero entries may be unbounded and $w$ is a bounded noise. We propose a so-called extended Lasso optimization which takes into consideration sparse prior information of both $beta^{star}$ and $e^{star}$. Our first result shows that the extended Lasso can faithfully recover both the regression as well as the corruption vector. Our analysis relies on the notion of extended restricted eigenvalue for the design matrix $X$. Our second set of results applies to a general class of Gaussian design matrix $X$ with i.i.d rows $oper N(0, Sigma)$, for which we can establish a surprising result: the extended Lasso can recover exact signed supports of both $beta^{star}$ and $e^{star}$ from only $Omega(k log p log n)$ observations, even when the fraction of corruption is arbitrarily close to one. Our analysis also shows that this amount of observations required to achieve exact signed support is indeed optimal.
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this paper, we robustify their distributed algorithm by using robust covariance matrix estimators respectively proposed by Minsker [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{46}$(6A) (2018) 2871-2903] and Ke et al. [$mathit{Statistical}$ $mathit{Science}$ $textbf{34}$(3) (2019) 454-471] instead of the sample covariance matrix. We extend the deviation bound of robust covariance estimators with bounded fourth moments to the case of the heavy-tailed distribution under only bounded $2+epsilon$ moments assumption. The theoretical results show that after the shrinkage or truncation treatment for the sample covariance matrix, the statistical error rate of the final estimator produced by the robust algorithm is the same as that of sub-Gaussian tails, when $epsilon geq 2$ and the sampling distribution is symmetric innovation. While $2 > epsilon >0$, the rate with respect to the sample size of each server is slower than that of the bounded fourth moment assumption. Extensive numerical results support the theoretical analysis, and indicate that the algorithm performs better than the original distributed algorithm and is robust to heavy-tailed data and outliers.
This paper studies the problem of high-dimensional multiple testing and sparse recovery from the perspective of sequential analysis. In this setting, the probability of error is a function of the dimension of the problem. A simple sequential testing procedure is proposed. We derive necessary conditions for reliable recovery in the non-sequential setting and contrast them with sufficient conditions for reliable recovery using the proposed sequential testing procedure. Applications of the main results to several commonly encountered models show that sequential testing can be exponentially more sensitive to the difference between the null and alternative distributions (in terms of the dependence on dimension), implying that subtle cases can be much more reliably determined using sequential methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا