Do you want to publish a course? Click here

Sequential Analysis in High Dimensional Multiple Testing and Sparse Recovery

157   0   0.0 ( 0 )
 Added by Matt Malloy
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

This paper studies the problem of high-dimensional multiple testing and sparse recovery from the perspective of sequential analysis. In this setting, the probability of error is a function of the dimension of the problem. A simple sequential testing procedure is proposed. We derive necessary conditions for reliable recovery in the non-sequential setting and contrast them with sufficient conditions for reliable recovery using the proposed sequential testing procedure. Applications of the main results to several commonly encountered models show that sequential testing can be exponentially more sensitive to the difference between the null and alternative distributions (in terms of the dependence on dimension), implying that subtle cases can be much more reliably determined using sequential methods.



rate research

Read More

We study an online multiple testing problem where the hypotheses arrive sequentially in a stream. The test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We investigate two procedures LORD and LOND, proposed by (Javanmard and Montanari, 2015), which are proved to control the FDR in an online manner. In some (static) model, we show that LORD is optimal in some asymptotic sense, in particular as powerful as the (static) Benjamini-Hochberg procedure to first asymptotic order. We also quantify the performance of LOND. Some numerical experiments complement our theory.
426 - Weinan Wang , Wenguang Sun 2017
Multistage design has been used in a wide range of scientific fields. By allocating sensing resources adaptively, one can effectively eliminate null locations and localize signals with a smaller study budget. We formulate a decision-theoretic framework for simultaneous multi-stage adaptive testing and study how to minimize the total number of measurements while meeting pre-specified constraints on both the false positive rate (FPR) and missed discovery rate (MDR). The new procedure, which effectively pools information across individual tests using a simultaneous multistage adaptive ranking and thresholding (SMART) approach, can achieve precise error rates control and lead to great savings in total study costs. Numerical studies confirm the effectiveness of SMART for FPR and MDR control and show that it achieves substantial power gain over existing methods. The SMART procedure is demonstrated through the analysis of high-throughput screening data and spatial imaging data.
The classical binary hypothesis testing problem is revisited. We notice that when one of the hypotheses is composite, there is an inherent difficulty in defining an optimality criterion that is both informative and well-justified. For testing in the simple normal location problem (that is, testing for the mean of multivariate Gaussians), we overcome the difficulty as follows. In this problem there exists a natural hardness order between parameters as for different parameters the error-probailities curves (when the parameter is known) are either identical, or one dominates the other. We can thus define minimax performance as the worst-case among parameters which are below some hardness level. Fortunately, there exists a universal minimax test, in the sense that it is minimax for all hardness levels simultaneously. Under this criterion we also find the optimal test for composite hypothesis testing with training data. This criterion extends to the wide class of local asymptotic normal models, in an asymptotic sense where the approximation of the error probabilities is additive. Since we have the asymptotically optimal tests for composite hypothesis testing with and without training data, we quantify the loss of universality and gain of training data for these models.
This paper studies the optimal rate of estimation in a finite Gaussian location mixture model in high dimensions without separation conditions. We assume that the number of components $k$ is bounded and that the centers lie in a ball of bounded radius, while allowing the dimension $d$ to be as large as the sample size $n$. Extending the one-dimensional result of Heinrich and Kahn cite{HK2015}, we show that the minimax rate of estimating the mixing distribution in Wasserstein distance is $Theta((d/n)^{1/4} + n^{-1/(4k-2)})$, achieved by an estimator computable in time $O(nd^2+n^{5/4})$. Furthermore, we show that the mixture density can be estimated at the optimal parametric rate $Theta(sqrt{d/n})$ in Hellinger distance and provide a computationally efficient algorithm to achieve this rate in the special case of $k=2$. Both the theoretical and methodological development rely on a careful application of the method of moments. Central to our results is the observation that the information geometry of finite Gaussian mixtures is characterized by the moment tensors of the mixing distribution, whose low-rank structure can be exploited to obtain a sharp local entropy bound.
A large dimensional characterization of robust M-estimators of covariance (or scatter) is provided under the assumption that the dataset comprises independent (essentially Gaussian) legitimate samples as well as arbitrary deterministic samples, referred to as outliers. Building upon recent random matrix advances in the area of robust statistics, we specifically show that the so-called Maronna M-estimator of scatter asymptotically behaves similar to well-known random matrices when the population and sample sizes grow together to infinity. The introduction of outliers leads the robust estimator to behave asymptotically as the weighted sum of the sample outer products, with a constant weight for all legitimate samples and different weights for the outliers. A fine analysis of this structure reveals importantly that the propensity of the M-estimator to attenuate (or enhance) the impact of outliers is mostly dictated by the alignment of the outliers with the inverse population covariance matrix of the legitimate samples. Thus, robust M-estimators can bring substantial benefits over more simplistic estimators such as the per-sample normalized version of the sample covariance matrix, which is not capable of differentiating the outlying samples. The analysis shows that, within the class of Maronnas estimators of scatter, the Huber estimator is most favorable for rejecting outliers. On the contrary, estimators more similar to Tylers scale invariant estimator (often preferred in the literature) run the risk of inadvertently enhancing some outliers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا