No Arabic abstract
Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study, both experimentally and theoretically, a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyse the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning.
In this work we investigate the transient solidification of a Lennard-Jones liquid using non-equilibrium molecular dynamics simulations and continuum heat transfer theory. The simulations are performed in slab-shaped boxes, where a cold thermostat placed at the centre of the box drives the solidification of the liquid. Two well-defined solid fronts propagate outwards from the centre towards the ends of the box until solidification is completed. A continuum phase change model that accounts for the difference between the solid and the liquid densities is formulated to describe the evolution of the temperature and the position of the solidification front. Simulation results for a small and a large nanoscale system, of sizes $30.27$,nm and $60.54$,nm, are compared with the predictions of the theoretical model. Following a transient period of $sim$20-40 ps and a displacement of the solidification front of 1-2.5 nm we find that the simulations and the continuum theory show good agreement. We use this fact to combine the simulation and theoretical approaches to design a simple procedure to calculate the latent heat of the material. We also perform simulations of the homogeneous freezing process, i.e. in the absence of a temperature gradient and at constant temperature, by quenching the liquid at supercooled temperatures. We demonstrate that the solidification rate of homogenous freezing is much faster than the one obtained under a thermal gradient for systems of the same size subject to the same thermostat temperature. Our study and conclusions should be of general interest to a wide range of atomistic solids.
We find a rich variety of counterintuitive features in the steady states of a qubit array coupled to a dissipative source and sink at two arbitrary sites, using a master equation approach. We show there are setups where increasing the pump and loss rates establishes long-range coherence. At sufficiently strong dissipation, the source or sink effectively generates correlation between its neighboring sites, leading to a striking density-wave order for a class of resonant geometries. This effect can be used more widely to engineer nonequilibrium phases. We show the steady states are generically distinct for hard-core bosons and free fermions, and differ significantly from the ones found before in special cases. They are explained by generally applicable ansatzes for the long-time dynamics at weak and strong dissipation. Our findings are relevant for existing photonic setups.
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demons intricate action consists of measuring individual particles and subsequently performing feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
We compare the decay rates of excited populations directly calculated within a Keldysh formalism to the equation of motion of the population itself for a Hubbard-Holstein model in two dimensions. While it is true that these two approaches must give the same answer, it is common to make a number of simplifying assumptions within the differential equation for the populations that allows one to interpret the decay in terms of hot electrons interacting with a phonon bath. Here we show how care must be taken to ensure an accurate treatment of the equation of motion for the populations due to the fact that there are identities that require cancellations of terms that naively look like they contribute to the decay rates. In particular, the average time dependence of the Greens functions and self-energies plays a pivotal role in determining these decay rates.
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without ..... (SEE THE PDF FOR THE REST OF THIS ABSTRACT)