No Arabic abstract
In this work we investigate the transient solidification of a Lennard-Jones liquid using non-equilibrium molecular dynamics simulations and continuum heat transfer theory. The simulations are performed in slab-shaped boxes, where a cold thermostat placed at the centre of the box drives the solidification of the liquid. Two well-defined solid fronts propagate outwards from the centre towards the ends of the box until solidification is completed. A continuum phase change model that accounts for the difference between the solid and the liquid densities is formulated to describe the evolution of the temperature and the position of the solidification front. Simulation results for a small and a large nanoscale system, of sizes $30.27$,nm and $60.54$,nm, are compared with the predictions of the theoretical model. Following a transient period of $sim$20-40 ps and a displacement of the solidification front of 1-2.5 nm we find that the simulations and the continuum theory show good agreement. We use this fact to combine the simulation and theoretical approaches to design a simple procedure to calculate the latent heat of the material. We also perform simulations of the homogeneous freezing process, i.e. in the absence of a temperature gradient and at constant temperature, by quenching the liquid at supercooled temperatures. We demonstrate that the solidification rate of homogenous freezing is much faster than the one obtained under a thermal gradient for systems of the same size subject to the same thermostat temperature. Our study and conclusions should be of general interest to a wide range of atomistic solids.
Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study, both experimentally and theoretically, a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyse the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning.
We compare the decay rates of excited populations directly calculated within a Keldysh formalism to the equation of motion of the population itself for a Hubbard-Holstein model in two dimensions. While it is true that these two approaches must give the same answer, it is common to make a number of simplifying assumptions within the differential equation for the populations that allows one to interpret the decay in terms of hot electrons interacting with a phonon bath. Here we show how care must be taken to ensure an accurate treatment of the equation of motion for the populations due to the fact that there are identities that require cancellations of terms that naively look like they contribute to the decay rates. In particular, the average time dependence of the Greens functions and self-energies plays a pivotal role in determining these decay rates.
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demons intricate action consists of measuring individual particles and subsequently performing feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
We perform nonadiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory (DFT) is used to validate the technique across a range of temperatures and densities spanning the warm dense matter regime. Focusing on a specific temperature and density (3.5 eV, 5.2 g/cm3), we report on differences in the dynamic structure factor and dispersion relation across a variety of adiabatic and nonadiabatic techniques. We find the dispersion relation produced with EFF is in close agreement with the more robust and adiabatic Kohn-Sham DFT.