Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demons intricate action consists of measuring individual particles and subsequently performing feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwells demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using a feedback scheme. We investigate the electrical work produced by the demon and find a non-Gaussian work distribution. To illustrate the effect of a realistic charge detection scheme, we develop a model taking into account noise as well as a finite delay time, and show that an experimental realization is feasible with present day technology. Depending on the accuracy of the measurement, the system is operated as an implementation of Maxwells demon or a single-electron pump.
Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study, both experimentally and theoretically, a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyse the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning.
We suggest that a single-electron transistor continuously monitored by a quantum point contact may function as a Maxwell demon when closed-loop feedback operations are applied as time-dependent modifications of the tunneling rates across its junctions. The device may induce a current across the single-electron transistor even when no bias voltage or thermal gradient is applied. For different feedback schemes, we derive effective master equations and compare the induced feedback current and its fluctuations as well as the generated power. Provided that tunneling rates can be modified without changing the transistor level, the device may be implemented with current technology.
The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.
Using flow equations, equilibrium and non-equilibrium dynamics of a two-level system are investigated, which couples via non-commuting components to two independent oscillator baths. In equilibrium the two-level energy splitting is protected when the TLS is coupled symmetrically to both bath. A critical asymmetry angle separates the localized from the delocalized phase. On the other hand, real-time decoherence of a non-equilibrium initial state is for a generic initial state faster for a coupling to two baths than for a single bath.