Do you want to publish a course? Click here

Hybridization gap in the heavy-fermion compound UPd$_2$Al$_3$ via quasiparticle scattering spectroscopy

282   0   0.0 ( 0 )
 Added by Wan Kyu Park
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from point-contact spectroscopy of the antiferromagnetic heavy-fermion superconductor UPd$_2$Al$_3$: conductance spectra are taken from single crystals with two major surface orientations as a function of temperature and magnetic field, and analyzed using a theory of co-tunneling into an Anderson lattice. Spectroscopic signatures are clearly identified including the distinct asymmetric double-peak structure arising from the opening of a hybridization gap when a coherent heavy Fermi liquid is formed. Both the hybridization gap, found to be 7.2 $pm$ 0.3 meV at 4 K, and the conductance enhancement above a flat background decrease upon increasing temperature. While the hybridization gap is extrapolated to remain finite up to $sim$28 K, close to the temperature around which the magnetic susceptibility displays a broad peak, the conductance enhancement vanishes at $sim$18 K, slightly above the antiferromagnetic transition temperature ($T_textrm{N}$ $approx$ 14 K). This rapid decrease of the conductance enhancement is understood as a consequence of the junction drifting away from the ballistic regime due to increased scattering off magnons associated with the localized U 5$f$ electrons. This shows that while the hybridization gap opening is not directly associated with the antiferromagnetic ordering, its visibility in the conductance is greatly affected by the temperature-dependent magnetic excitations. Our findings are not only consistent with the 5$f$ dual-nature picture in the literature but also shed new light on the interplay between the itinerant and localized electrons in UPd$_2$Al$_3$.



rate research

Read More

A Kondo lattice of strongly interacting f-electrons immersed in a sea of conduction electrons remains one of the unsolved problems in condensed matter physics. The problem concerns localized f-electrons at high temperatures which evolve into hybridized heavy quasi-particles at low temperatures, resulting in the appearance of a hybridization gap. Here, we unveil the presence of hybridization gap in Ce2RhIn8 and find the surprising result that the temperature range at which this gap becomes visible by angle-resolved photoemission spectroscopy is nearly an order of magnitude lower than the temperature range where the magnetic scattering becomes larger than the phonon scattering, as observed in the electrical resistivity measurements. Furthermore the spectral gap appears at temperature scales nearly an order of magnitude higher than the coherent temperature. We further show that when replacing In by Cd to tune the local density of states at the Ce3+ site, there is a strong reduction of the hybridization strength, which in turn leads to the suppression of the hybridization gap at low temperatures.
The intermediate valence compound YbAl$_3$ is known to undergo a hybridization process between itinerant and localized electrons. The resulting heavy Fermi liquid remains non-magnetic and non-superconducting. A microscopic understanding of the hybridization process in YbAl$_3$ is still lacking although some characteristic temperature and energy scales have been identified. Here we report results from novel spectroscopic measurements based on quasiparticle scattering. From the conductance spectra taken over a wide temperature range, we deduce that the band renormalization and hybridization process begins around 110 K, causing the conductance enhancement with a Fano background. This temperature, a new scale found in this work, is much higher than the coherence temperature (34 K). Our observation is in agreement with the slow crossover scenario discussed recently in the literature. The indirect hybridization gap appears to open concomitantly with the emergence of a coherent Fermi liquid. Thus, we suggest its measurement as a more rigorous way to define the coherence temperature than just taking the temperature for a resistivity peak.
Magnetic susceptibility results for single crystals of the new cubic compounds UT$_2$Al$_{20}$ (T=Mn, V, and Mo) are reported. Magnetization, specific heat, resistivity, and neutron diffraction results for a single crystal and neutron diffraction and inelastic spectra for a powder sample are reported for UMn$_2$Al$_{20}$. For T = V and Mo, temperature independent Pauli paramagnetism is observed. For UMn$_2$Al$_{20}$, a ferromagnetic transition is observed in the magnetic susceptibility at $T_c$ = 20 K. The specific heat anomaly at $T_c$ is very weak while no anomaly in the resistivity is seen at $T_c$. We discuss two possible origins for this behavior of UMn$_2$Al$_{20}$: moderately small moment itinerant ferromagnetism, or induced local moment ferromagnetism.
59 - S. Zhang , G. Chappell , N. Pouse 2020
We address two long-standing questions regarding the hidden order in URu2Si2: Is it associated with the hybridization process, and what are the distinct roles played by the localized and itinerant electrons? Our quasiparticle scattering spectroscopy reveals a hybridization gap ubiquitous in the entire phase space spanned by P and Fe substitutions in URu2Si2, including the no-order and antiferromagnetic regions, with minimal change upon crossing the phase boundary. This indicates its opening isnt associated with the ordering, and thus localized electrons must be the major player. Towards a consistent understanding of all the other gap-like behaviors observed only below transition temperatures, we analyze the electrical resistivity using a model in which gapped bosonic excitations are the dominant scattering source. With their stiffness set to follow an unusual temperature dependence (decreasing with decreasing temperature), this model fits all of our resistivity data well including the jump at the transition. Remarkably, the extracted gap increases slowly with increasing Fe content, similarly to the gap detected by inelastic neutron scattering at Q1 = (1.4, 0, 0), suggesting a common origin. Such a model can also naturally explain the Hall effect temperature dependence without invoking Fermi surface gapping.
We report a comprehensive investigation of the lattice dynamics of URu$_2$Si$_2$ as a function of temperature using Raman scattering, optical conductivity and inelastic neutron scattering measurements as well as theoretical {it ab initio} calculations. The main effects on the optical phonon modes are related to Kondo physics. The B$_{1g}$ ($Gamma_3$ symmetry) phonon mode slightly softens below $sim$100~K, in connection with the previously reported softening of the elastic constant, $C_{11}-C_{12}$, of the same symmetry, both observations suggesting a B$_{1g}$ symmetry-breaking instability in the Kondo regime. Through optical conductivity, we detect clear signatures of strong electron-phonon coupling, with temperature dependent spectral weight and Fano line shape of some phonon modes. Surprisingly, the line shapes of two phonon modes, E$_u$(1) and A$_{2u}$(2), show opposite temperature dependencies. The A$_{2u}$(2) mode loses its Fano shape below 150 K, whereas the E$_u$(1) mode acquires it below 100~K, in the Kondo cross-over regime. This may point out to momentum-dependent Kondo physics. By inelastic neutron scattering measurements, we have drawn the full dispersion of the phonon modes between 300~K and 2~K. No remarkable temperature dependence has been obtained including through the hidden order transition. {it Ab initio} calculations with the spin-orbit coupling are in good agreement with the data except for a few low energy branches with propagation in the (a,b) plane.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا