No Arabic abstract
We have studied local magnetic moment and electronic phase separation in superconducting K$_{x}$Fe$_{2-y}$Se$_2$ by x-ray emission and absorption spectroscopy. Detailed temperature dependent measurements at the Fe K-edge have revealed coexisting electronic phases and their correlation with the transport properties. By cooling down, the local magnetic moment of Fe shows a sharp drop across the superconducting transition temperature (T$_c$) and the coexisting phases exchange spectral weights with the low spin state gaining intensity at the expense of the higher spin state. After annealing the sample across the iron-vacancy order temperature, the system does not recover the initial state and the spectral weight anomaly at T$_c$ as well as superconductivity disappear. The results clearly underline that the coexistence of the low spin and high spin phases and the transitions between them provide unusual magnetic fluctuations and have a fundamental role in the superconducting mechanism of electronically inhomogeneous K$_{x}$Fe$_{2-y}$Se$_2$ system.
Electrical-resistivity and magnetic-susceptibility measurements under hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting LiFeP. A broad superconducting (SC) region exists in the temperature - pressure (T-p) phase diagram. No indications for a spin-density-wave transition have been found, but an enhanced resistivity coefficient at low pressures hints at the presence of magnetic fluctuations. Our results show that the superconducting state in LiFeP is more robust than in the isostructural and isoelectronic LiFeAs. We suggest that this finding is related to the nearly regular [FeP_4] tetrahedron in LiFeP.
Coexistence of phases, characterized by different electronic degrees of freedom, commonly occurs in layered superconductors. Among them, alkaline intercalated chalcogenides are model systems showing microscale coexistence of paramagnetic (PAR) and antiferromagnetic (AFM) phases, however, temporal behavior of different phases is still unknown. Here, we report the first visualization of the atomic motion in the granular phase of K$_{x}$Fe$_{2-y}$Se$_2$ using X-ray photon correlation spectroscopy. Unlike the PAR phase, the AFM texture reveals an intermittent dynamics with avalanches as in martensites. When cooled down across the superconducting transition temperature T$_c$, the AFM phase goes through an anomalous slowing behavior suggesting a direct relationship between the atomic motions in the AFM phase and the superconductivity. In addition of providing a compelling evidence of avalanche-like dynamics in a layered superconductor, the results provide a basis for new theoretical models to describe quantum states in inhomogeneous solids.
We have used polarized and unpolarized neutron diffraction to determine the spatial distribution of the magnetization density induced by a magnetic field of 9 T in the tetragonal phase of K0.8Fe1.6Se2. The maximum entropy reconstruction shows clearly that most of the magnetization is confined to the region around the iron atoms whereas there is no significant magnetization associated with either Se or K atoms. The distribution of magnetization around the Fe atom is slightly nonspherical with a shape which is extended along the [0 0 1] direction in the projection. Multipolar refinement results show that the electrons which give rise to the paramagnetic susceptibility are confined to the Fe atoms and their distribution suggests that they occupy 3d t2g-type orbitals with around 66% in those of xz/yz symmetry. Detail modeling of the magnetic form factor indicates the presence of an orbital moment to the total paramagnetic moment of Fe2+
The nature of the magnetic correlations in Fe-based superconductors remains a matter of controversy. To address this issue, we use inelastic neutron scattering to characterize the strength and temperature dependence of low-energy spin fluctuations in FeTe$_{0.35}$Se$_{0.65}$ ($T_c sim 14$ K). Integrating magnetic spectral weight for energies up to 12 meV, we find a substantial moment ($agt 0.26 mu_B/$Fe) that shows little change with temperature, from below T$_c$ to 300 K. Such behavior cannot be explained by the response of conduction electrons alone; states much farther from the Fermi energy must have an instantaneous local spin polarization. It raises interesting questions regarding the formation of the spin gap and resonance peak in the superconducting state.
Here we establish a combined electronic phase diagram of isoelectronic FeSe1-xSx (0.19 > x > 0.0) and FeSe1-yTey (0.04 < y < 1.0) single crystals. The FeSe1-yTey crystals with y = 0.04 - 0.30 are grown by a hydrothermal ion-deintercalation (HID) method. Based on combined experiments of the specific heat, electrical transport, and angle-resolved photoemission spectroscopy, no signature of the tetragonal-symmetry-broken transition to orthorhombic (nematic) phase is observed in the HID FeSe1-yTey samples, as compared with the FeSe1-xSx samples showing this transition at Ts. A ubiquitous dip-like temperature dependence of the Hall coefficient is observed around a characteristic temperature T* in the tetragonal regimes, which is well above the superconducting transition. More importantly, we find that the superconducting transition temperature Tc is positively correlated with the Hall-dip temperature T* across the FeSe1-xSx and FeSe1-yTey systems, suggesting that the tetragonal background is a fundamental host for the superconductivity.