Do you want to publish a course? Click here

Evidence for local moment magnetism in superconducting FeTe0.35Se0.65

166   0   0.0 ( 0 )
 Added by Zhijun Xu
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature of the magnetic correlations in Fe-based superconductors remains a matter of controversy. To address this issue, we use inelastic neutron scattering to characterize the strength and temperature dependence of low-energy spin fluctuations in FeTe$_{0.35}$Se$_{0.65}$ ($T_c sim 14$ K). Integrating magnetic spectral weight for energies up to 12 meV, we find a substantial moment ($agt 0.26 mu_B/$Fe) that shows little change with temperature, from below T$_c$ to 300 K. Such behavior cannot be explained by the response of conduction electrons alone; states much farther from the Fermi energy must have an instantaneous local spin polarization. It raises interesting questions regarding the formation of the spin gap and resonance peak in the superconducting state.



rate research

Read More

We report on the crystal structure, physical properties, and electronic structure calculations for the ternary pnictide compound EuCr2As2. X-ray diffraction studies confirmed that EuCr2As2 crystalizes in the ThCr2Si2-type tetragonal structure (space group I4/mmm). The Eu ions are in a stable divalent state in this compound. Eu moments in EuCr2As2 order magnetically below Tm = 21 K. A sharp increase in the magnetic susceptibility below Tm and the positive value of the paramagnetic Curie temperature obtained from the Curie-Weiss fit suggest dominant ferromagnetic interactions. The heat capacity exhibits a sharp {lambda}-shape anomaly at Tm, confirming the bulk nature of the magnetic transition. The extracted magnetic entropy at the magnetic transition temperature is consistent with the theoretical value Rln(2S+1) for S = 7/2 of the Eu2+ ion. The temperature dependence of the electrical resistivity r{ho}(T) shows metallic behavior along with an anomaly at 21 K. In addition, we observe a reasonably large negative magneto-resistance (~ -24%) at lower temperature. Electronic structure calculations for EuCr2As2 reveal a moderately high density of states of Cr-3d orbitals at the Fermi energy, indicating that the nonmagnetic state of Cr is unstable against magnetic order. Our density functional calculations for EuCr2As2 predict a G-type AFM order in the Cr sublattice. The electronic structure calculations suggest a weak interlayer coupling of the Eu moments.
Intra unit cell (IUC) magnetic order observed by polarized neutron diffraction (PND) is one of the hallmarks of the pseudogap state of high-temperature copper oxide superconductors. This experimental observation, usually interpreted as a result of loop currents, has been recently challenged based on lower statistics data. We here address the crucial issue of polarization inhomogeneities in the neutron beams showing that the original data had a much better reproducibilty. Within these technical limitations, we here propose a self-consistent analysis that potentially solves the controversy. We show that all the reported PND experiments in superconducting cuprates are actually compatible with the existence of an IUC magnetism.
We have studied local magnetic moment and electronic phase separation in superconducting K$_{x}$Fe$_{2-y}$Se$_2$ by x-ray emission and absorption spectroscopy. Detailed temperature dependent measurements at the Fe K-edge have revealed coexisting electronic phases and their correlation with the transport properties. By cooling down, the local magnetic moment of Fe shows a sharp drop across the superconducting transition temperature (T$_c$) and the coexisting phases exchange spectral weights with the low spin state gaining intensity at the expense of the higher spin state. After annealing the sample across the iron-vacancy order temperature, the system does not recover the initial state and the spectral weight anomaly at T$_c$ as well as superconductivity disappear. The results clearly underline that the coexistence of the low spin and high spin phases and the transitions between them provide unusual magnetic fluctuations and have a fundamental role in the superconducting mechanism of electronically inhomogeneous K$_{x}$Fe$_{2-y}$Se$_2$ system.
100 - S. Ouazi , J. Bobroff , H. Alloul 2005
Oxygen NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high Tc YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above Tc, with a typical extension xi=3 cell units for Zn and xi>=3 for Ni. In addition, Zn is observed to induce a local density of states near the Fermi Energy in its neighbourhood, which also decays over about 3 cell units. Its magnitude decreases sharply with increasing temperature. This allows direct comparison with the STM observations done in BiSCO.
Disorder has different profound effects on superconducting thin films. For a large variety of materials, increasing disorder reduces electronic screening which enhances electron-electron repulsion. These fermionic effects lead to a mechanism described by Finkelstein: when disorder combined to electron-electron interactions increases, there is a global decrease of the superconducting energy gap $Delta$ and of the critical temperature $T_c$, the ratio $Delta$/$k_BT_c$ remaining roughly constant. In addition, in most films an emergent granularity develops with increasing disorder and results in the formation of inhomogeneous superconducting puddles. These gap inhomogeneities are usually accompanied by the development of bosonic features: a pseudogap develops above the critical temperature $T_c$ and the energy gap $Delta$ starts decoupling from $T_c$. Thus the mechanism(s) driving the appearance of these gap inhomogeneities could result from a complicated interplay between fermionic and bosonic effects. By studying the local electronic properties of a NbN film with scanning tunneling spectroscopy (STS) we show that the inhomogeneous spatial distribution of $Delta$ is locally strongly correlated to a large depletion in the local density of states (LDOS) around the Fermi level, associated to the Altshuler-Aronov effect induced by strong electronic interactions. By modelling quantitatively the measured LDOS suppression, we show that the latter can be interpreted as local variations of the film resistivity. This local change in resistivity leads to a local variation of $Delta$ through a local Finkelstein mechanism. Our analysis furnishes a purely fermionic scenario explaining quantitatively the emergent superconducting inhomogeneities, while the precise origin of the latter remained unclear up to now.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا