Do you want to publish a course? Click here

E_n-cohomology with coefficients as functor cohomology

228   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.



rate research

Read More

148 - Ulrich Bunke 2010
The initial motivation of this work was to give a topological interpretation of two-periodic twisted de-Rham cohomology which is generalizable to arbitrary coefficients. To this end we develop a sheaf theory in the context of locally compact topological stacks with emphasis on the construction of the sheaf theory operations in unbounded derived categories, elements of Verdier duality and integration. The main result is the construction of a functorial periodization functor associated to a U(1)-gerbe. As applications we verify the $T$-duality isomorphism in periodic twisted cohomology and in periodic twisted orbispace cohomology.
We construct a natural transformation from the Bousfield-Kuhn functor evaluated on a space to the Topological Andre-Quillen cohomology of the K(n)-local Spanier-Whitehead dual of the space, and show that the map is an equivalence in the case where the space is a sphere. This results in a method for computing unstable v_n-periodic homotopy groups of spheres from their Morava E-cohomology (as modules over the Dyer-Lashof algebra of Morava E-theory). We relate the resulting algebraic computations to the algebraic geometry of isogenies between Lubin-Tate formal groups.
We use factorization homology and higher Hochschild (co)chains to study various problems in algebraic topology and homotopical algebra, notably brane topology, centralizers of $E_n$-algebras maps and iterated bar constructions. In particular, we obtain an $E_{n+1}$-algebra model on the shifted integral chains of the mapping space of the n-sphere into an orientable closed manifold $M$. We construct and use $E_infty$-Poincare duality to identify higher Hochschild cochains, modeled over the $n$-sphere, with the chains on the above mapping space, and then relate Hochschild cochains to the deformation complex of the $E_infty$-algebra $C^*(M)$, thought of as an $E_n$-algebra. We invoke (and prove) the higher Deligne conjecture to furnish $E_n$-Hochschild cohomology, and all that is naturally equivalent to it, with an $E_{n+1}$-algebra structure. We prove that this construction recovers the sphere product. In fact, our approach to the Deligne conjecture is based on an explicit description of the $E_n$-centralizers of a map of $E_infty$-algebras $f:Ato B$ by relating it to the algebraic structure on Hochschild cochains modeled over spheres, which is of independent interest and explicit. More generally, we give a factorization algebra model/description of the centralizer of any $E_n$-algebra map and a solution of Deligne conjecture. We also apply similar ideas to the iterated bar construction. We obtain factorization algebra models for (iterated) bar construction of augmented $E_m$-algebras together with their $E_n$-coalgebras and $E_{m-n}$-algebra structures, and discuss some of its features. For $E_infty$-algebras we obtain a higher Hochschild chain model, which is an $E_n$-coalgebra. In particular, considering an n-connected topological space $Y$, we obtain a higher Hochschild cochain model of the natural $E_n$-algebra structure of the chains of the iterated loop space of $Y$.
62 - Ugo Bruzzo 2016
We show that the hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor. We use this fact to study a Hochschild-Serre type spectral sequence attached to an extension of Lie algebroids.
159 - Sebastian Thomas 2009
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of G. Our main tool is the theory of crossed module extensions of groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا