Do you want to publish a course? Click here

Lie algebroid cohomology as a derived functor

63   0   0.0 ( 0 )
 Added by Ugo Bruzzo
 Publication date 2016
  fields
and research's language is English
 Authors Ugo Bruzzo




Ask ChatGPT about the research

We show that the hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor. We use this fact to study a Hochschild-Serre type spectral sequence attached to an extension of Lie algebroids.



rate research

Read More

We consider the extension problem for Lie algebroids over schemes over a field. Given a locally free Lie algebroid Q over a scheme (X,O), and a sheaf of finitely generated Lie O-algebras L, we determine the obstruction to the existence of extensions 0 --> L --> E --> Q --> 0, and classify the extensions in terms of a suitable Lie algebroid hypercohomology group. In the preliminary sections we study free Lie algebroids and recall some basic facts about Lie algebroid hypercohomology.
245 - Paolo Saracco 2021
We prove how the universal enveloping algebra constructions for Lie-Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a supplement, the categorical approach offers new insights into the definitions of Lie-Rinehart algebra morphisms, of modules over Lie-Rinehart algebras and of the infinitesimal gauge algebra of a module.
Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
208 - Wei Bai , Wende Liu 2013
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
129 - Yong Yang , Wende Liu 2018
Suppose the ground field $mathbb{F}$ is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalgebra. We also describe the associative superalgebra structures of the (divided power) cohomology for some low-dimensional filiform Lie superalgebras.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا