Do you want to publish a course? Click here

Periodic twisted cohomology and T-duality

148   0   0.0 ( 0 )
 Added by Thomas Schick
 Publication date 2010
  fields
and research's language is English
 Authors Ulrich Bunke




Ask ChatGPT about the research

The initial motivation of this work was to give a topological interpretation of two-periodic twisted de-Rham cohomology which is generalizable to arbitrary coefficients. To this end we develop a sheaf theory in the context of locally compact topological stacks with emphasis on the construction of the sheaf theory operations in unbounded derived categories, elements of Verdier duality and integration. The main result is the construction of a functorial periodization functor associated to a U(1)-gerbe. As applications we verify the $T$-duality isomorphism in periodic twisted cohomology and in periodic twisted orbispace cohomology.



rate research

Read More

Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
91 - Benjamin Antieau 2018
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of the derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.
159 - Sebastian Thomas 2009
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of G. Our main tool is the theory of crossed module extensions of groups.
Operadic tangent cohomology generalizes the existing theories of Harrison cohomology, Chevalley--Eilenberg cohomology and Hochschild cohomology. These are usually non-trivial to compute. We complement the existing computational techniques by producing a spectral sequence that converges to the operadic tangent cohomology of a fixed algebra. Our main technical tool is that of filtrations arising from towers of cofibrations of algebras, which play the same role cell attaching maps and skeletal filtrations do for topological spaces. As an application, we consider the rational Adams--Hilton construction on topological spaces, where our spectral sequence gives rise to a seemingly new and completely algebraic description of the Serre spectral sequence, which we also show is multiplicative and converges to the Chas--Sullivan loop product. Finally, we consider relative Sullivan--de Rham models of a fibration $p$, where our spectral sequence converges to the rational homotopy groups of the identity component of the space of self-fiber homotopy equivalences of $p$.
220 - Tilman Bauer 2008
We prove that the Morava-$K$-theory-based Eilenberg-Moore spectral sequence has good convergence properties whenever the base space is a $p$-local finite Postnikov system with vanishing $(n+1)$st homotopy group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا