Do you want to publish a course? Click here

Ab initio Calculation of Dipole Moments and Transition Dipole Moments of HCl+ and HBr+ Molecular Ions

174   0   0.0 ( 0 )
 Added by Valerij Gurin S
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic structure of HCl+ and HBr+ molecular ions is calculated using the symmetry-adapted-cluster configuration interaction (SAC-CI) method. In this paper, we analyse dipole moments (DM) for a series of low-lying six 2Pi-states and transition dipole moments (TDM for transitions from the ground state X2Pi to the excited 2Pi-series. Behavior of DMs with change of interatomic distances is different for these ions for the excited 2Pi-states in correspondence with different dissociation paths. TDMs reveal the pronounced maxima at the beginning steps of dissociation.



rate research

Read More

111 - Paul Froese , Petr Navratil 2021
In any finite system, the presence of a non-zero permanent electric dipole moment (EDM) would indicate CP violation beyond the small violation predicted in the Standard Model. Here, we use the ab initio no-core shell model (NCSM) framework to theoretically investigate the magnitude of the nuclear EDM. We calculate EDMs of several light nuclei using chiral two- and three-body interactions and a PT-violating Hamiltonian based on a one-meson-exchange model. We present a benchmark calculation for $^3$He, as well as results for the more complex nuclei $^{6,7}$Li, $^9$Be, $^{10,11}$B, $^{13}$C, $^{14,15}$N, and $^{19}$F. Our results suggest that different nuclei can be used to probe different terms of the PT violating interaction. These calculations allow us to suggest which nuclei may be good candidates in the search for a measurable permanent electric dipole moment.
The molecular dipole moment ($boldsymbol{mu}$) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra, as well as induction and long-range electrostatic interactions. Furthermore, it can be extracted directly from high-level quantum mechanical calculations, making it an ideal target for machine learning (ML). In this work, we choose to represent this quantity with a physically inspired ML model that captures two distinct physical effects: local atomic polarization is captured within the symmetry-adapted Gaussian process regression (SA-GPR) framework, which assigns a (vector) dipole moment to each atom, while movement of charge across the entire molecule is captured by assigning a partial (scalar) charge to each atom. The resulting MuML models are fitted together to reproduce molecular $boldsymbol{mu}$ computed using high-level coupled-cluster theory (CCSD) and density functional theory (DFT) on the QM7b dataset. The combined model shows excellent transferability when applied to a showcase dataset of larger and more complex molecules, approaching the accuracy of DFT at a small fraction of the computational cost. We also demonstrate that the uncertainty in the predictions can be estimated reliably using a calibrated committee model. The ultimate performance of the models depends, however, on the details of the system at hand, with the scalar model being clearly superior when describing large molecules whose dipole is almost entirely generated by charge separation. These observations point to the importance of simultaneously accounting for the local and non-local effects that contribute to $boldsymbol{mu}$; further, they define a challenging task to benchmark future models, particularly those aimed at the description of condensed phases.
This chapter of the report of the ``Flavour in the era of the LHC Workshop discusses the theoretical, phenomenological and experimental issues related to flavour phenomena in the charged lepton sector and in flavour-conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavour structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the Standard Model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments.
The electric and magnetic dipole moments of dyon fermions are calculated within N=2 supersymmetric Yang-Mills theory including the theta-term. It is found, in particular, that the gyroelectric ratio deviates from the canonical value of 2 for the monopole fermion (n_m=1,n_e=0) in the case theta ot=0. Then, applying the S-duality transformation to the result for the dyon fermions, we obtain an explicit prediction for the electric dipole moment (EDM) of the charged fermion (`electron). It is thus seen that the approach presented here provides a novel method for computing the EDM induced by the theta-term.
Postulating the existence of a fnite-mass mediator of T,P-odd coupling between atomic electrons and nucleons we consider its effect on permanent electric dipole moment (EDM) of diamagnetic atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM results for the conventional contact interaction. Based on this analysis we derive limits on coupling strengths and carrier masses from experimental limits on EDM of 199Hg atom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا