Do you want to publish a course? Click here

The reversal of the SF-density relation in a massive, X-ray selected galaxy cluster at z=1.58: results from Herschel

204   0   0.0 ( 0 )
 Added by Joana Santos
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dusty, star-forming galaxies have a critical role in the formation and evolution of massive galaxies in the Universe. Using deep far-infrared imaging in the range 100-500um obtained with the Herschel telescope, we investigate the dust-obscured star formation in the galaxy cluster XDCP J0044.0-2033 at z=1.58, the most massive cluster at z >1.5, with a measured mass M200= 4.7x10$^{14}$ Msun. We perform an analysis of the spectral energy distributions (SEDs) of 12 cluster members (5 spectroscopically confirmed) detected with >3$sigma$ significance in the PACS maps, all ULIRGs. The individual star formation rates (SFRs) lie in the range 155-824 Ms/yr, with dust temperatures of 24$pm$35 K. We measure a strikingly high amount of star formation (SF) in the cluster core, SFR (< 250 kpc) > 1875$pm$158 Ms/yr, 4x higher than the amount of star formation in the cluster outskirts. This scenario is unprecedented in a galaxy cluster, showing for the first time a reversal of the SF-density relation at z~1.6 in a massive cluster.



rate research

Read More

We investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z=1.58, which constitutes the most extreme matter density peak at this redshift currently known. We analyze deep VLT/HAWK-I NIR data in the J- and Ks-bands, complemented by Subaru imaging in i and V, Spitzer observations at 4.5 micron, and new spectroscopic observations with VLT/FORS2. We detect a cluster-associated excess population of about 90 galaxies, which follows a centrally peaked, compact NFW galaxy surface density profile with a concentration of c200~10. Based on the Spitzer 4.5 micron imaging data, we measure a stellar mass fraction of fstar,500=(3.3+-1.4)% consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple z_f=3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass assembly epoch through merging processes. Consequently, the bright end of the cluster red-sequence is not in place, while at intermediate magnitudes [Ks*,Ks*+1.6] a red-locus population is present, which is then sharply truncated at magnitudes fainter than Ks*+1.6. The dominant cluster core population comprises post-quenched galaxies transitioning towards the red-sequence at intermediate magnitudes, while additionally a significant blue cloud population of faint star-forming galaxies is present even in the densest central regions. Our observations lend support to the scenario in which the dominant effect of the dense z~1.6 cluster environment is an accelerated mass assembly timescale through merging activity that is responsible for driving core galaxies across the mass quenching threshold of log(Mstar/Msun)~10.4.
Recent large surveys have found a reversal of the star formation rate (SFR)-density relation at z=1 from that at z=0 (e.g. Elbaz et al.; Cooper et al.), while the sign of the slope of the color-density relation remains unchanged (e.g. Cucciati et al.; Quadri et al.). We use state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations of a 21x24x20 (Mpc/h)$^3$ region centered on a cluster to examine the SFR-density and color-density relations of galaxies at z=0 and z=1. The local environmental density is defined by the dark matter mass in spheres of radius 1 Mpc/h, and we probe two decades of environmental densities. Our simulations produce a large increase of SFR with density at z=1, as in the observations of Elbaz et al. We also find a significant evolution to z=0, where the SFR-density relation is much flatter. The color-density relation in our simulations is consistent from z=1 to z=0, in agreement with observations. We find that the increase in the median SFR with local density at z=1 is due to a growing population of star-forming galaxies in higher-density environments. At z=0 and z=1 both the SFR and cold gas mass are tightly correlated with the galaxy halo mass, and therefore the correlation between median halo mass and local density is an important cause of the SFR-density relation at both redshifts. We also show that the local density on 1 Mpc/h scales affects galaxy SFRs as much as halo mass at z=0. Finally, we find indications that the role of the 1 Mpc/h scale environment reverses from z=0 to z=1: at z=0 high-density environments depress galaxy SFRs, while at z=1 high-density environments tend to increase SFRs.
We discovered an over-density of H-alpha-emitting galaxies associated with a Planck compact source in the COSMOS field (PHzG237.0+42.5) through narrow-band imaging observations with Subaru/MOIRCS. This Planck-selected dusty proto-cluster at z=2.16 has 38 H-alpha emitters including six spectroscopically confirmed galaxies in the observed MOIRCS 4x7 field (corresponding to ~2.0x3.5~Mpc^2 in physical scale). We find that massive H-alpha emitters with log(M*/Msun)>10.5 are strongly clustered in the core of the proto-cluster (within ~300-kpc from the density peak of the H-alpha emitters). Most of the H-alpha emitters in this proto-cluster lie along the star-forming main sequence using H-alpha-based SFR estimates, whilst the cluster total SFR derived by integrating the H-alpha-based SFRs is an order of magnitude smaller than those estimated from Planck/Herschel FIR photometry. Our results suggest that H-alpha is a good observable for detecting moderately star-forming galaxies and tracing the large-scale environment in and around high-z dusty proto-clusters, but there is a possibility that a large fraction of star formation could be obscured by dust and undetected in H-alpha observations.
154 - Joana S. Santos 2011
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance level (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40)=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1 from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.
We report the X-ray detection of two z>1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J1432.4+3250 at z=1.49, the most distant of 18 confirmed z>1 clusters in the ISCS to date. We also present new spectroscopy for ISCS J1438.1+3414, previously reported at z = 1.41, and measure its dynamical mass. Clusters ISCS J1432.4+3250 and ISCS J1438.1+3414 are detected in 36ks and 143ks Chandra exposures at significances of 5.2 sigma and 9.7 sigma, from which we measure total masses of log(M_{200,Lx}/Msun) = 14.4 +/- 0.2 and 14.35^{+0.14}_{-0.11}, respectively. The consistency of the X-ray and dynamical properties of these high redshift clusters further demonstrates that the ISCS is robustly detecting massive clusters to at least z = 1.5.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا