Do you want to publish a course? Click here

X-Ray Emission from Two Infrared-Selected Galaxy Clusters at z>1.4 in the IRAC Shallow Cluster Survey

139   0   0.0 ( 0 )
 Added by Mark Brodwin
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the X-ray detection of two z>1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J1432.4+3250 at z=1.49, the most distant of 18 confirmed z>1 clusters in the ISCS to date. We also present new spectroscopy for ISCS J1438.1+3414, previously reported at z = 1.41, and measure its dynamical mass. Clusters ISCS J1432.4+3250 and ISCS J1438.1+3414 are detected in 36ks and 143ks Chandra exposures at significances of 5.2 sigma and 9.7 sigma, from which we measure total masses of log(M_{200,Lx}/Msun) = 14.4 +/- 0.2 and 14.35^{+0.14}_{-0.11}, respectively. The consistency of the X-ray and dynamical properties of these high redshift clusters further demonstrates that the ISCS is robustly detecting massive clusters to at least z = 1.5.



rate research

Read More

Galaxy clusters trace the highest density peaks in the large-scale structure of the Universe. Their clustering provides a powerful probe that can be exploited in combination with cluster mass measurements to strengthen the cosmological constraints provided by cluster number counts. We investigate the spatial properties of a homogeneous sample of X-ray selected galaxy clusters from the XXL survey, the largest programme carried out by the XMM-Newton satellite. The measurements are compared to $Lambda$-cold dark matter predictions, and used in combination with self-calibrated mass scaling relations to constrain the effective bias of the sample, $b_{eff}$, and the matter density contrast, $Omega_{rm M}$. We measured the angle-averaged two-point correlation function of the XXL cluster sample. The analysed catalogue consists of $182$ X-ray selected clusters from the XXL second data release, with median redshift $langle z rangle=0.317$ and median mass $langle M_{500} ranglesimeq1.3cdot10^{14} M_odot$. A Markov chain Monte Carlo analysis is performed to extract cosmological constraints using a likelihood function constructed to be independent of the cluster selection function. Modelling the redshift-space clustering in the scale range $10<r,[$Mpch$]<40$, we obtain $Omega_{rm M}=0.27_{-0.04}^{+0.06}$ and $b_{eff}=2.73_{-0.20}^{+0.18}$. This is the first time the two-point correlation function of an X-ray selected cluster catalogue at such relatively high redshifts and low masses has been measured. The XXL cluster clustering appears fully consistent with standard cosmological predictions. The analysis presented in this work demonstrates the feasibility of a cosmological exploitation of the XXL cluster clustering, paving the way for a combined analysis of XXL cluster number counts and clustering.
We present the galaxy cluster autocorrelation function of 277 galaxy cluster candidates with 0.25 le z le 1.5 in a 7 deg^2 area of the IRAC Shallow Cluster Survey. We find strong clustering throughout our galaxy cluster sample, as expected for these massive structures. Specifically, at <z> = 0.5 we find a correlation length of r_0 = 17.40^{+3.98}_{-3.10} h^-1 Mpc, in excellent agreement with the Las Campanas Distant Cluster Survey, the only other non-local measurement. At higher redshift, <z> = 1, we find that strong clustering persists, with a correlation length of r_0=19.14^{+5.65}_{-4.56} h^-1 Mpc. A comparison with high resolution cosmological simulations indicates these are clusters with halo masses of sim 10^{14} Msun, a result supported by estimates of dynamical mass for a subset of the sample. In a stable clustering picture, these clusters will evolve into massive (10^{15} Msun) clusters by the present day.
[abridged] We present the results of a pilot study for the extended MACS survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z>0.5. Our pilot study applies the eMACS concept to the 71 deg^2 area extended by the ten fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g,r, i, and z bands in a 5x5 arcmin^2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS database, i.e., all RASS sources listed in the Bright and Faint Source Catalogs (BSC and FSC) that fall within the MDS footprint. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z>0.3. X-ray follow-up observations will be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20,000 deg^2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z>0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging. Representing a tremendous gain over the presently known two dozen such systems from X-ray, optical, and SZ cluster surveys combined, the sample of over 100 extremely massive clusters at z>0.5 expected from eMACS would be invaluable for the identification of the most powerful gravitational lenses in the Universe, as well as for in-depth and statistical studies of the physical properties of the most massive galaxy clusters out to z~1.
There is a lack of large samples of spectroscopically confirmed clusters and protoclusters at high redshifts, $z>$1.5. Discovering and characterizing distant (proto-)clusters is important for yielding insights into the formation of large-scale structure and on the physical processes responsible for regulating star-formation in galaxies in dense environments. The Spitzer Planck Herschel Infrared Cluster (SPHerIC) survey was initiated to identify these characteristically faint and dust-reddened sources during the epoch of their early assembly. We present Spitzer IRAC observations of 82 galaxy (proto-)cluster candidates at 1.3<$z_p$<3.0 that were vetted in a two step process: (1) using Planck to select by color those sources with the highest star-formation rates, and (2) using Herschel at higher resolution to separate out the individual red sources. The addition of the Spitzer data enables efficient detection of the central and massive brightest red cluster galaxies (BRCGs). We find that BRCGs are associated with highly significant, extended and crowded regions of IRAC sources which are more overdense than the field. This result corroborates our hypothesis that BRCGs within the Planck - Herschel sources trace some of the densest and actively star-forming proto-clusters in the early Universe. On the basis of a richness-mass proxy relation, we obtain an estimate of their mean masses which suggests our sample consists of some of the most massive clusters at z$approx$2 and are the likely progenitors of the most massive clusters observed today.
We have identified 335 galaxy cluster and group candidates spanning 0<z<2, using a 4.5um selected sample of galaxies in a 7.25 deg^2 region in the Spitzer/IRAC Shallow Survey. Using full redshift probability distributions for all galaxies, clusters were identified as 3-dimensional overdensities using a wavelet algorithm. To date 12 clusters at z>1, and over 60 at z < 0.5 have been spectroscopically confirmed. The mean I-[3.6] color for cluster galaxies up to z~1 is well matched by a z_f=3 passively evolving model. At z>1, a wider range of formation histories is needed, but higher formation redshifts (i.e. z_f ge 4-5) are favored for most clusters. The cluster autocorrelation function, measured for the first time out to z=1.5, is found not to have evolved over the last 10 Gyr, in agreement with the prediction from LCDM. The average mass of the IRAC Shallow Cluster Survey sample, inferred from its clustering, is ~ 10^14 Msun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا