Do you want to publish a course? Click here

Point-contact Andreev-reflection spectroscopy in Fe(Te,Se) films: multiband superconductivity and electron-boson coupling

199   0   0.0 ( 0 )
 Added by Dario Daghero
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a study of the superconducting order parameter in Fe(Te$_{1-x}$Se$_{x}$) thin films (with different Se contents: x=0.3, 0.4, 0.5) by means of point-contact Andreev-reflection spectroscopy (PCARS). The PCARS spectra show reproducible evidence of multiple structures, namely two clear conductance maxima associated to a superconducting gap of amplitude $Delta_E simeq 2.75 k_B T_c$ and additional shoulders at higher energy that, as we show, are the signature of the strong interaction of charge carriers with a bosonic mode whose characteristic energy coincides with the spin-resonance energy. The details of some PCARS spectra at low energy suggest the presence of a smaller and not easily discernible gap of amplitude $Delta_H simeq 1.75 k_B T_c$. The existence of this gap and its amplitude are confirmed by PCARS measurements in Fe(Te$_{1-x}$Se$_{x}$) single crystals. The values of the two gaps $Delta_E$ and $Delta_H$, once plotted as a function of the local critical temperature $T_c^A$, turn out to be in perfect agreement with the results obtained by various experimental techniques reported in literature.



rate research

Read More

Point-contact Andreev reflection spectroscopy (PCAR) has proven to be one of the most powerful tools in the investigation of superconductors, where it provides information on the order parameter (OP), a fundamental property of the superconducting state. In the past 20 years, successive improvements of the models used to analyze the spectra have continuously extended its capabilities, making it suited to study new superconductors with exotic properties such as anisotropic, nodal and multiple OPs. In Fe-based superconductors, the complex compound- and doping-dependent Fermi surface and the predicted sensitivity of the OP to fine structural details present unprecedent challenges for this technique. Nevertheless, we show here that PCAR measurements in Fe-based superconductors carried out so far have already greatly contributed to our understanding of these materials, despite some apparent inconsistencies that can be overcome if a homogeneous treatment of the data is used. We also demonstrate that, if properly extended theoretical models for Andreev reflection are used, directional PCAR spectroscopy can provide detailed information not only on the amplitude and symmetry of the OPs, but also on the nature of the pairing boson, and even give some hints about the shape of the Fermi surface.
Directional point-contact Andreev-reflection (PCAR) measurements in Ba(Fe1-xCox)2As2 single crystals (Tc=24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The PCAR spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Omega_b(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s+- Eliashberg model by using an electron-boson spectral function peaked at Omega_0 = 12 meV ~ Omega_b(0).
161 - K A Yates , L F Cohen , Zhi-An Ren 2008
The newly discovered oxypnictide family of superconductors show very high critical temperatures of up to 55K. Whilst there is growing evidence that suggests a nodal order parameter, point contact Andreev reflection spectroscopy can provide crucial information such as the gap value and possibly the number of energy gaps involved. For the oxygen deficient NdFeAsO0.85 with a Tc of 45.5K, we show that there is clearly a gap value at 4.2K that is of the order of 7meV, consistent with previous studies on oxypnictides with lower Tc. Additionally, taking the spectra as a function of gold tip contact pressure reveals important changes in the spectra which may be indicative of more complex physics underlying this structure.
Systematic studies of the NdFeAsOF superconducting energy gap via the point-contact Andreev-reflection (PCAR) spectroscopy are presented. The PCAR conductance spectra show at low temperatures a pair of gap-like peaks at about 4 - 7 mV indicating the superconducting energy gap and in most cases also a pair of humps at around 10 mV. Fits to the s-wave two-gap model of the PCAR conductance allowed to determine two superconducting energy gaps in the system. The energy-gap features however disappear already at T* = 15 to 20 K, much below the particular Tc of the junction under study. At T* a zero-bias conductance (ZBC) peak emerges, which at higher temperatures usually overwhelms the spectrum with intensity significantly higher than the conductance signal at lower temperatures. Possible causes of this unexpected temperature effect are discussed. In some cases the conductance spectra show just a reduced conductance around the zero-bias voltage, the effect persisting well above the bulk transition temperature. This indicates a presence of the pseudogap in the system.
Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn$_5$ using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn$_5$, CeRhIn$_5$, and YbAl$_3$, each with different electron mass. In contrast with Au/CeCoIn$_5$ junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا