Do you want to publish a course? Click here

Spin mixing conductance at a well-controlled platinum/yttrium iron garnet interface

120   0   0.0 ( 0 )
 Added by Zhiyong Qiu
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to contribute to large spin mixing conductance. The spin mixing conductance is obtained to be $1.3times10^{18} rm{m^{-2}}$ at the well-controlled Pt/YIG interface, which is close to a theoretical prediction.



rate research

Read More

The dependence of the spin pumping efficiency and the spin mixing conductance on the surface processing of yttrium iron garnet (YIG) before the platinum (Pt) deposition has been investigated quantitatively. The ferromagnetic resonance driven spin pumping injects a spin polarized current into the Pt layer, which is transformed into an electromotive force by the inverse spin Hall effect. Our experiments show that the spin pumping effect indeed strongly depends on the YIG/Pt interface condition. We measure an enhancement of the inverse spin Hall voltage and the spin mixing conductance of more than two orders of magnitude with improved sample preparation.
Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron garnet (YIG), one of the most extensively investigated magnetic insulators, remains challenging because of the large number of atoms in a unit cell. Here, we report temperature-dependent and polarization-resolved Raman measurements in a YIG bulk crystal. We first classify the phonon modes based on their symmetry. We then develop a modified mean-field theory and define a symmetry-adapted parameter to quantify spin-phonon interaction in a phonon-mode specific way for the first time in YIG. Based on this improved mean-field theory, we discover a positive correlation between the spin-phonon interaction strength and the phonon frequency.
We report a tunable spin mixing conductance, up to $pm 22%$, in a Y${}_{3}$Fe${}_{5}$O${}_{12}$/Platinum (YIG/Pt) bilayer.This control is achieved by applying a gate voltage with an ionic gate technique, which exhibits a gate-dependent ferromagnetic resonance line width. Furthermore, we observed a gate-dependent spin pumping and spin Hall angle in the Pt layer, which is also tunable up to $pm$ 13.6%. This work experimentally demonstrates spin current control through spin pumping and a gate voltage in a YIG/Pt bilayer, demonstrating the crucial role of the interfacial charge density for the spin transport properties in magnetic insulator/heavy metal bilayers.
88 - J. Forster , S. Wintz , J. Bailey 2019
Time-resolved scanning transmission x-ray microscopy (TR-STXM) has been used for the direct imaging of spin wave dynamics in thin film yttrium iron garnet (YIG) with spatial resolution in the sub 100 nm range. Application of this x-ray transmission technique to single crystalline garnet films was achieved by extracting a lamella (13x5x0.185 $mathrm{mu m^3}$) of liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 100~nm and 10~$mathrm{mu}$m. The results were compared to theoretical models. Here, the widely used approximate dispersion equation for dipole-exchange spin waves proved to be insufficient for describing the observed Damon-Eshbach type modes. For achieving an accurate description, we made use of the full analytical theory taking mode-hybridization effects into account.
The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic contact (detector) on the magnetic film, spatially separated from the first contact that is used to apply the temperature bias (injector). Magnon-polarons are hybridized lattice and spin waves in magnetic materials, generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett. textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms of magnon-polaron formation. Here we report the observation of magnon-polarons in emph{nonlocal} magnon spin injection/detection devices for various injector-detector spacings and sample temperatures. Unexpectedly, we find that the magnon-polaron resonances can suppress rather than enhance the nonlocal SSE. Using finite element modelling we explain our observations as a competition between the SSE and spin diffusion in YIG. These results give unprecedented insights into the magnon-phonon interaction in a key magnetic material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا