Do you want to publish a course? Click here

13C-methyl formate: observations of a sample of high mass star-forming regions including Orion-KL and spectroscopic characterization

206   0   0.0 ( 0 )
 Added by Cecile Favre
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic centre for methyl formate, HCOOCH$_{3}$, and its isotopologues H$^{13}$COOCH$_{3}$ and HCOO$^{13}$CH$_{3}$. The observations were carried out with the APEX telescope in the frequency range 283.4--287.4~GHz. Based on the APEX observations, we report tentative detections of the $^{13}$C-methyl formate isotopologue HCOO$^{13}$CH$_{3}$ towards the following four massive star-forming regions: Sgr~B2(N-LMH), NGC~6334~IRS~1, W51 e2 and G19.61-0.23. In addition, we have used the 1~mm ALMA science verification observations of Orion-KL and confirm the detection of the $^{13}$C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the $^{12}$C/$^{13}$C isotope ratio in methyl formate toward Orion-KL Compact Ridge and Hot Core-SW components (68.4$pm$10.1 and 71.4$pm$7.8, respectively) are, for both the $^{13}$C-methyl formate isotopologues, commensurate with the average $^{12}$C/$^{13}$C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the $^{12}$C/$^{13}$C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H$^{13}$COOCH$_{3}$ and HCOO$^{13}$CH$_{3}$ species. New spectroscopic data for both isotopomers H$^{13}$COOCH$_{3}$ and HCOO$^{13}$CH$_{3}$, presented in this study, has made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.



rate research

Read More

Observations of distinct positions in Orion and W3 revealed ripples on the HCN(1-0), HCO^+(1-0) and CO(1-0) line profiles which can be result of emission of large number of unresolved thermal clumps in the beam that move with random velocities. The total number of such clumps are ~(0.4-4) 10^5 for the areas with linear sizes ~0.1-0.5 pc.
The TOPGot project studies a sample of 86 high-mass star-forming regions in different evolutionary stages from starless cores to ultra compact HII regions. The aim of the survey is to analyze different molecular species in a statistically significant sample to study the chemical evolution in high-mass star-forming regions, and identify chemical tracers of the different phases. The sources have been observed with the IRAM 30m telescope in different spectral windows at 1, 2, and 3 mm. In this first paper, we present the sample and analyze the spectral energy distributions (SEDs) of the TOPGot sources to derive physical parameters. We use the MADCUBA software to analyze the emission of methyl cyanide (CH$_3$CN), a well-known tracer of high-mass star formation. The emission of the $rm{CH_3CN(5_{K}-4_{K})}$ K-transitions has been detected towards 73 sources (85% of the sample), with 12 non-detections and one source not observed in the frequency range of $rm{CH_3CN(5_{K}-4_{K})}$. The emission of CH$_3$CN has been detected towards all evolutionary stages, with the mean abundances showing a clear increase of an order of magnitude from high-mass starless-cores to later evolutionary stages. We found a conservative abundance upper limit for high-mass starless cores of $X_{rm CH_3CN}<4.0times10^{-11}$, and a range in abundance of $4.0times10^{-11}<X_{rm CH_3CN}<7.0times10^{-11}$ for those sources that are likely high-mass starless cores or very early high-mass protostellar objects. In fact, in this range of abundance we have identified five sources previously not classified as being in a very early evolutionary stage. The abundance of $rm{CH_3CN}$ can thus be used to identify high-mass star-forming regions in early phases of star-formation.
We present the study of deuteration of cyanoacetylene (HC$_3$N) towards a sample of 28 high-mass star-forming cores divided into different evolutionary stages, from starless to evolved protostellar cores. We report for the first time the detection of DC$_3$N towards 15 high-mass cores. The abundance ratios of DC$_3$N with respect HC$_3$N range in the interval 0.003$-$0.022, lower than those found in low-mas protostars and dark clouds. No significant trend with the evolutionary stage, or with the kinetic temperature of the region, has been found. We compare the level of deuteration of HC$_3$N with those of other molecules towards the same sample, finding weak correlation with species formed only or predominantly in gas phase (N$_2$H$^+$ and HNC, respectively), and no correlation with species formed only or predominantly on dust grains (CH$_3$OH and NH$_3$, respectively). We also present a single-dish map of DC$_3$N towards the protocluster IRAS 05358+3543, which shows that DC$_3$N traces an extended envelope ($sim$0.37 pc) and peaks towards two cold condensations separated from the positions of the protostars and the dust continuum. The observations presented in this work suggest that deuteration of HC$_3$N is produced in the gas of the cold outer parts of massive star-forming clumps, giving us an estimate of the deuteration factor prior to the formation of denser gas.
We report on the tentative detection of $trans$ Ethyl Methyl Ether (tEME), $t-CH_3CH_2OCH_3$, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for $gauche$-$trans$-n-propanol, $Gt-n-CH_3CH_2CH_2OH$, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are $leq(4.0pm0.8)times10^{15} cm^{-2}$ and $leq(1.0pm0.2)times10^{15} cm^{-2}$ for tEME and Gt-n-propanol, respectively. The rotational temperature is $sim100 K$ for both molecules. We also provide maps of $CH_3OCOH$, $CH_3CH_2OCOH$, $CH_3OCH_3$, $CH_3OH$, and $CH_3CH_2OH$ to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio $N(CH_3OCH_3)/N(tEME)geq150$ in the compact ridge of Orion.
This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: `cloud water in cold tenuous foreground clouds, `envelope water in dense protostellar envelopes, and `outflow water in protostellar outflows. The low H2O abundance (1e-10 -- 1e-9) in foreground clouds and protostellar envelopes is due to rapid photodissociation and freeze-out on dust grains, respectively. The outflows show higher H2O abundances (1e-7 -- 1e-6) due to grain mantle evaporation and (probably) neutral-neutral reactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا