No Arabic abstract
This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: `cloud water in cold tenuous foreground clouds, `envelope water in dense protostellar envelopes, and `outflow water in protostellar outflows. The low H2O abundance (1e-10 -- 1e-9) in foreground clouds and protostellar envelopes is due to rapid photodissociation and freeze-out on dust grains, respectively. The outflows show higher H2O abundances (1e-7 -- 1e-6) due to grain mantle evaporation and (probably) neutral-neutral reactions.
Context; Our understanding of the star formation process has traditionally been confined to certain mass or luminosity boundaries because most studies focus only on low-, intermediate- or high-mass star-forming regions. As part of the Water In Star-forming regions with Herschel (WISH) key program, water and other important molecules, such as CO and OH, have been observed in 51 embedded young stellar objects (YSOs). The studied sample covers a range of luminosities from <1 to >10^5 L_sol. Aims; We analyse the CO line emission towards a large sample of protostars in terms of both line intensities and profiles. Methods; Herschel-HIFI spectra of the 12CO 10-9, 13CO 10-9 and C18O 5-4, 9-8 and 10-9 lines are analysed for a sample of 51 YSOs. In addition, JCMT spectra of 12CO 3-2 and C18O 3-2 extend this analysis to cooler gas components. Results; All observed CO and isotopologue spectra show a strong linear correlation between the logarithms of the line and bolometric luminosities across six orders of magnitude on both axes. This suggests that the high-J CO lines primarily trace the amount of dense gas associated with YSOs. This relation can be extended to larger (extragalactic) scales. The majority of the detected 12CO line profiles can be decomposed into a broad and a narrow Gaussian component, while the C18O spectra are mainly fitted with a single Gaussian. A broadening of the line profile is also observed from pre-stellar cores to embedded protostars, which is due mostly to non-thermal motions (turbulence/infall). The widths of the broad 12CO 3-2 and 10-9 velocity components correlate with those of the narrow C18O 9-8 profiles, suggesting that the entrained outflowing gas and envelope motions are related independent of the mass of the protostar. These results indicate that physical processes in protostellar envelopes have similar characteristics across the studied luminosity range.
Herschel-HIFI observations of water in the low-mass star-forming object L1448-MM, known for its prominent outflow, are presented, as obtained within the `Water in star-forming regions with Herschel (WISH) key programme. Six H2-16O lines are targeted and detected (E_up/k_B ~ 50-250 K), as is CO J= 10-9 (E_up/k_B ~ 305 K), and tentatively H2-18O 110-101 at 548 GHz. All lines show strong emission in the bullets at |v| > 50 km/s from the source velocity, in addition to a broad, central component and narrow absorption. The bullets are seen much more prominently in H$_2$O than in CO with respect to the central component, and show little variation with excitation in H2O profile shape. Excitation conditions in the bullets derived from CO lines imply a temperature >150 K and density >10^5 cm^-3, similar to that of the broad component. The H2O/CO abundance ratio is similar in the bullets and the broad component, ~ 0.05-1.0, in spite of their different origins in the molecular jet and the interaction between the outflow and the envelope. The high H2O abundance indicates that the bullets are H2 rich. The H2O cooling in the bullets and the broad component is similar and higher than the CO cooling in the same components. These data illustrate the power of Herschel-HIFI to disentangle different dynamical components in low-mass star-forming objects and determine their excitation and chemical conditions.
In contrast to extensively studied dense star-forming cores, little is known about diffuse gas surrounding star-forming regions. We study molecular gas in the high-mass star-forming region NGC6334I, which contains diffuse, quiescent components that are inconspicuous in widely used molecular tracers such as CO. We present Herschel/HIFI observations of CH toward NGC6334I observed as part of the CHESS key program. HIFI resolves the hyperfine components of its J=3/2-1/2 transition, observed in both emission and absorption. The CH emission appears close to the systemic velocity of NGC6334I, while its measured linewidth of 3 km/s is smaller than previously observed in dense gas tracers such as NH3 and SiO. The CH abundance in the hot core is 7 10^-11, two to three orders of magnitude lower than in diffuse clouds. While other studies find distinct outflows in, e.g., CO and H2O toward NGC6334I, we do not detect outflow signatures in CH. To explain the absorption signatures, at least two absorbing components are needed at -3.0 and +6.5 km/s with N(CH)=7 10^13 and 3 10^13 cm^-2. Two additional absorbing clouds are found at +8.0 and 0.0 km/s, both with N(CH)=2 10^13 cm^-2. Turbulent linewidths for the four absorption components vary between 1.5 and 5.0 km/s in FWHM. We constrain physical properties of our CH clouds by matching our CH absorbers with other absorption signatures. In the hot core, molecules such as H2O and CO trace gas that is heated and dynamically influenced by outflow activity, whereas CH traces more quiescent material. The four CH absorbers have column densities and turbulent properties consistent with diffuse clouds: two are located near NGC6334, and two are unrelated foreground clouds. Local density and dynamical effects influence the chemical composition of physical components of NGC6334, causing some components to be seen in CH but not in other tracers, and vice versa.
Water In Star-forming regions with Herschel (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC1333 in several H2-16O, H2-18O, and CO transitions. Line profiles are resolved for five H16O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km/s), medium-broad (~5-10 km/s), and narrow (<5 km/s) components. The H2-18O emission is only detected in broad 1_10-1_01 lines (>20 km/s), indicating that its physical origin is the same as for the broad H2-16O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (<1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities.
To understand the origin of water line emission and absorption during high-mass star formation, we decompose high-resolution Herschel-HIFI line spectra toward 19 high-mass star-forming regions into three distinct physical components. Protostellar envelopes are usually seen as narrow absorptions or emissions in the H2O 1113 and 1669 GHz ground-state lines, the H2O 987 GHz excited-state line, and the H2O-18 1102 GHz ground-state line. Broader features due to outflows are usually seen in absorption in the H2O 1113 and 1669 GHz lines, in 987 GHz emission, and not seen in H2O-18, indicating a low column density and a high excitation temperature. The H2O 1113 and 1669 GHz spectra show narrow absorptions by foreground clouds along the line of sight, which have a low column density and a low excitation temperature, although their H2O ortho/para ratios are close to 3. The intensities of the H2O 1113 and 1669 GHz lines do not show significant trends with luminosity, mass, or age. In contrast, the 987 GHz line flux increases with luminosity and the H2O-18 line flux decreases with mass. Furthermore, appearance of the envelope in absorption in the 987 GHz and H2O-18 lines seems to be a sign of an early evolutionary stage. We conclude that the ground state transitions of H2O trace the outer parts of the envelopes, so that the effects of star formation are mostly noticeable in the outflow wings. These lines are heavily affected by absorption, so that line ratios of H2O involving the ground states must be treated with caution. The average H2O abundance in high-mass protostellar envelopes does not change much with time. The 987 GHz line appears to be a good tracer of the mean weighted dust temperature of the source, which may explain why it is readily seen in distant galaxies.