Do you want to publish a course? Click here

Entropy production in Gaussian bosonic transformations using the replica method: application to quantum optics

136   0   0.0 ( 0 )
 Added by Christos Gagatsos
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modeling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the von Neumann entropy produced by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution. Here, we overcome this difficulty by using the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to the field of quantum optics, where it enables accessing entropies in a two-mode squeezer or optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and an arbitrary Fock state, which yields a surprisingly simple, yet unknown analytical expression.



rate research

Read More

122 - Tian Qiu , Zhaoyu Fei , Rui Pan 2019
Entropy is one of the most basic concepts in thermodynamics and statistical mechanics. The most widely used definition of statistical mechanical entropy for a quantum system is introduced by von Neumann. While in classical systems, the statistical mechanical entropy is defined by Gibbs. The relation between these two definitions of entropy is still not fully explored. In this work, we study this problem by employing the phase-space formulation of quantum mechanics. For those quantum states having well-defined classical counterparts, we study the quantum-classical correspondence and quantum corrections of the entropy. We expand the von Neumann entropy in powers of ${hbar}$ by using the phase-space formulation, and the zeroth order term reproduces the Gibbs entropy. We also obtain the explicit expression of the quantum corrections of the entropy. Moreover, we find that for the thermodynamic equilibrium state, all terms odd in ${hbar}$ are exactly zero. As an application, we derive quantum corrections for the net work extraction during a quantum Carnot cycle. Our results bring important insights to the understanding of quantum entropy and may have potential applications in the study of quantum heat engines.
The entropy production in dissipative processes is the essence of the arrow of time and the second law of thermodynamics. For dissipation of quantum systems, it was recently shown that the entropy production contains indeed two contributions: a classical one and a quantum one. Here we show that for degenerate (or near-degenerate) quantum systems there are additional quantum contributions which, remarkably, can become negative. Furthermore, such negative contributions are related to significant changes in the ongoing thermodynamics. This includes phenomena such as generation of coherences between degenerate energy levels (called horizontal coherences), alteration of energy exchanges and, last but not least, reversal of the natural convergence of the populations toward the thermal equilibrium state. Going further, we establish a complementarity relation between horizontal coherences and population convergence, particularly enlightening for understanding heat flow reversals. Conservation laws of the different types of coherences are derived. Some consequences for thermal machines and resource theory of coherence are suggested.
We investigate the microscopic features of bosonic quantum transport in a non-equilibrium steady state, which breaks time reversal invariance spontaneously. The analysis is based on the probability distributions, generated by the correlation functions of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point-like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non-negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analysed. The role of the quantum statistics in this context is also discussed.
We study and compare the information loss of a large class of Gaussian bipartite systems. It includes the usual Caldeira-Leggett type model as well as Anosov models (parametric oscillators, the inverted oscillator environment, etc), which exhibit instability, one of the most important characteristics of chaotic systems. We establish a rigorous connection between the quantum Lyapunov exponents and coherence loss, and show that in the case of unstable environments coherence loss is completely determined by the upper quantum Lyapunov exponent, a behavior which is more universal than that of the Caldeira-Leggett type model.
The positivity of the partial transpose is in general only a necessary condition for separability. There exist quantum states that are not separable, but nevertheless are positive under partial transpose. States of this type are known as bound entangled states meaning that these states are entangled but they do not allow distillation of pure entanglement by means of local operations and classical communication (LOCC). We present a parametrization of a class of $2times 2$ bound entangled Gaussian states for bipartite continuous-variable quantum systems with two modes on each side. We propose an experimental protocol for preparing a particular bound entangled state in quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation number of thermal inputs and the degrees of squeezing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا