The Burst Observer and Optical Transient Exploring System (BOOTES) is a network of telescopes that allows the continuous monitoring of transient astrophysical sources. It was originally devoted to the study of the optical emission from gamma-ray bursts (GRBs) that occur in the Universe. In this paper we show the initial results obtained using the spectrograph COLORES (mounted on BOOTES-2), when observing optical transients (OTs) of diverse nature.
The Burst Observer and Optical Transient Exploring System (BOOTES) is a network of telescopes that allows the continuous monitoring of transient astrophysical sources. It was originally devoted to the study of the optical emission from gamma-ray bursts (GRBs) that occur in the Universe. In this paper we show the initial results obtained using the spectrograph COLORES (mounted on BOOTES-2), when observing compact objects of diverse nature.
Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients because (1) X-rays can quickly localize transients with large error circles, and (2) X-rays reveal the nature of transients that may not have unique signatures at other wavelengths. In this white paper, we identify key science questions about several extragalactic multi-messenger and multi-wavelength transients, and demonstrate how X-ray follow-up helps answer these questions
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ~ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.
In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observing strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
Realtime analyses are necessary to identify the source of high energy neutrinos. As an observatory with a 4$pi$ steradian field of view and near-100% duty cycle, the IceCube Neutrino Observatory is a unique facility for investigating transients. In 2016, IceCube established a pipeline that uses low-latency data to rapidly respond to astrophysical events that were of interest to the multi-messenger observational community. Here, we describe this pipeline and summarize the results from all of the analyses performed since 2016. We focus not only on those analyses which were performed in response to transients identified using other messengers such as photons and gravitational waves, but also on how this pipeline can be used to constrain populations of astrophysical neutrino transients by following up high-energy neutrino alerts.