No Arabic abstract
In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observing strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
Realtime analyses are necessary to identify the source of high energy neutrinos. As an observatory with a 4$pi$ steradian field of view and near-100% duty cycle, the IceCube Neutrino Observatory is a unique facility for investigating transients. In 2016, IceCube established a pipeline that uses low-latency data to rapidly respond to astrophysical events that were of interest to the multi-messenger observational community. Here, we describe this pipeline and summarize the results from all of the analyses performed since 2016. We focus not only on those analyses which were performed in response to transients identified using other messengers such as photons and gravitational waves, but also on how this pipeline can be used to constrain populations of astrophysical neutrino transients by following up high-energy neutrino alerts.
The recent association between IC-170922A and the blazar TXS0506+056 highlights the importance of real-time observations for identifying possible astrophysical neutrino sources. Thanks to its near-100% duty cycle, 4$pi$ steradian field of view, and excellent sensitivity over many decades of energy, IceCube is well suited both to generate alerts for follow-up by other instruments and to rapidly follow up alerts generated by other instruments. Detection of neutrinos in coincidence with transient astrophysical phenomena serves as a smoking gun for hadronic processes and supplies essential information about the identities and mechanisms of cosmic-ray accelerators. In 2016, the IceCube Neutrino Observatory established a pipeline to rapidly search for neutrinos from astrophysical transients on timescales ranging from a fraction of a second to multiple weeks. Since then, 67 dedicated analyses have been performed searching for associations between IceCube neutrinos and astrophysical transients reported by radio, optical, X-ray, and gamma-ray instruments in addition to searching for lower energy neutrino signals in association with IceCubes own high-energy alerts. We present the event selection, maximum likelihood analysis method, and sensitivity of the IceCube real-time pipeline. We also summarize the results of all follow-up analyses to date.
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of $10^2 sim 10^5$ seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling astrophysical neutrino source, the blazar TXS0506+056, in 2017. In this talk, we will discuss the science reach and ongoing development of the IceCube-Gen2 facility---a planned extension to IceCube. IceCube-Gen2 will increase the rate of observed cosmic neutrinos by an order of magnitude, be able to detect five-times fainter neutrino sources, and extend the measurement of astrophysical neutrinos several orders of magnitude higher in energy. We will discuss the envisioned design of the instrument, which will include an enlarged in-ice optical array, a surface array for the study of cosmic-rays, and a shallow radio array to detect ultra-high energy (>100 PeV) neutrinos. we will also highlight ongoing efforts to develop and test new instrumentation for IceCube-Gen2.
The Dark Energy Survey (DES) is currently undertaking an observational program imaging $1/4$ of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the DES will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts (GRBs) over five years. Once GRBs are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of GRB activity, collates useful information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of GRBs, as well as for identifying key characteristics (e.g., photometric redshifts) of potential GRB host galaxies. We provide the functional details of the DESAlert software as it presently operates, as well as the data products that it produces, and we show sample results from the application of DESAlert to several previously-detected GRBs.