Do you want to publish a course? Click here

GOODS-HERSCHEL: star formation, dust attenuation and the FIR-radio correlation on the Main Sequence of star-forming galaxies up to z~4

213   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use deep panchromatic datasets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared and VLA radio continuum imaging, to explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation of star-forming galaxies to z~4. Our main results can be summarized as follows: i) the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while its normalization keeps increasing with redshift; ii) for the first time here we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated, strikingly we find that this attenuation relation evolves very weakly with redshift, the amount of dust attenuation increasing by less than 0.3 magnitudes over the redshift range [0.5-4] for a fixed stellar mass, as opposed to a tenfold increase of star formation rate; iv) the correlation between dust attenuation and the UV spectral slope evolves in redshift, with the median UV spectral slope of star-forming galaxies becoming bluer with redshift. By z~3, typical UV slopes are inconsistent, given the measured dust attenuation, with the predictions of commonly used empirical laws. Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than stellar reddening at all redshifts probed, and also that the amount of dust attenuation at a fixed ISM metallicity increases with redshift. We speculate that our results support evolving ISM conditions of typical star-forming galaxies such that at z~1.5 Main Sequence galaxies have ISM conditions getting closer to those of local starbursts.



rate research

Read More

We derive two-dimensional dust attenuation maps at $sim1~mathrm{kpc}$ resolution from the UV continuum for ten galaxies on the $zsim2$ Star-Forming Main Sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further obscuration in addition to the UV-based correction, though our sample does not include the most heavily obscured, massive galaxies. The individual rest-frame $V$-band dust attenuation (A$_{rm V}$) radial profiles scatter around an average profile that gently decreases from $sim1.8$ mag in the center down to $sim0.6$ mag at $sim3-4$ half-mass radii. We use these maps to correct UV- and H$alpha$-based star-formation rates (SFRs), which agree with each other. At masses $<10^{11}~M_{rm sun}$, the dust-corrected specific SFR (sSFR) profiles are on average radially constant at a mass-doubling timescale of $sim300~mathrm{Myr}$, pointing at a synchronous growth of bulge and disk components. At masses $>10^{11}~M_{rm sun}$, the sSFR profiles are typically centrally-suppressed by a factor of $sim10$ relative to the galaxy outskirts. With total central obscuration disfavored, this indicates that at least a fraction of massive $zsim2$ SFMS galaxies have started their inside-out star-formation quenching that will move them to the quenched sequence. In combination with other observations, galaxies above and below the ridge of the SFMS relation have respectively centrally-enhanced and centrally-suppressed sSFRs relative to their outskirts, supporting a picture where bulges are built due to gas `compaction that leads to a high central SFR as galaxies move towards the upper envelope of SFMS.
157 - D.Elbaz , M.Dickinson , H.S.Hwang 2011
We present the deepest far-IR observations obtained with Herschel and examine the 3-500um SEDs of galaxies at 0<z<2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer and AKARI data. We find that the ratio of total IR luminosity to rest-frame 8um luminosity, IR8 (=Lir/L8), follows a Gaussian distribution centered on IR8=4 and defines an IR main sequence (MS). A minority population (<20 %) of outliers producing a tail skewed toward higher values of IR8 consist of starbursts (SB) with compact projected star formation densities. IR8 can be used to separate galaxies with normal and extended modes of star formation from compact SBs with high-IR8, high projected IR surface brightness (>3x10^10 Lsun kpc^-2) and a high specific SFR (i.e., SBs). The rest-frame, UV-2700A size of these distant SBs is typically half that of MS galaxies, supporting the correlation between star formation density and SB activity that is measured for the local sample. Locally, (U)LIRGs are systematically in the SB mode, whereas most distant (U)LIRGs form stars in the normal MS mode. This confusion between two modes of star formation is the cause of the so-called mid-IR excess population of galaxies found at z>1.5 by previous studies. MS galaxies have strong PAH emission line features, a broad far-IR bump resulting from a combination of dust temperatures (Tdust~15-50 K), and an effective Tdust~31 K, as derived from the peak wavelength of their IR SED. Galaxies in the SB regime instead exhibit weak PAH EW and a sharper far-IR bump with an effective Tdust~40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray AGNs is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty SBs. After correcting for the effect of SBs on IR8, we identify new candidates for extremely obscured AGNs.
We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4<z<2.5$ in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass ($M_*$) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination of Herschel with Spitzer data have allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in B-z because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the H$alpha$ luminosity of a sample of star-forming galaxies at $1.4<z<1.7$. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.
Star formation rate (SFR) measurements at z>4 have relied mostly on rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on IRX-$beta$ relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4<z<5.9. We use stacks of continuum images to measure average infrared (IR) luminosities taking into account both detected and undetected sources. Based on these measurements, we measure the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at $zsim4.5$ and $zsim5.5$. We find that the main sequence and sSFR do not evolve significantly between $zsim4.5$ and $zsim5.5$, as opposed to lower redshifts. We develop a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift but even at $zsim5.5$ it constitutes around 61% of the total SFRD.
Deep far-infrared (FIR) cosmological surveys are known to be affected by source confusion, causing issues when examining the main sequence (MS) of star forming galaxies. This has typically been partially tackled by the use of stacking. However, stacking only provides the average properties of the objects in the stack. This work aims to trace the MS over $0.2leq z<6.0$ using the latest de-blended Herschel photometry, which reaches $approx10$ times deeper than the 5$sigma$ confusion limit in SPIRE. This provides more reliable star formation rates (SFRs), especially for the fainter galaxies, and hence a more reliable MS. We built a pipeline that uses the spectral energy distribution (SED) modelling and fitting tool CIGALE to generate flux density priors in the Herschel SPIRE bands. These priors were then fed into the de-blending tool XID+ to extract flux densities from the SPIRE maps. Multi-wavelength data were combined with the extracted SPIRE flux densities to constrain SEDs and provide stellar mass (M$_{star}$) and SFRs. These M$_{star}$ and SFRs were then used to populate the SFR-M$_{star}$ plane over $0.2leq z<6.0$. No significant evidence of a high-mass turn-over was found; the best fit is thus a simple two-parameter power law of the form log(SFR)$=alpha[$log(M$_{star})-10.5]+beta$. The normalisation of the power law increases with redshift, rapidly at $zlesssim1.8$, from $0.58pm0.09$ at $zapprox0.37$ to $1.31pm0.08$ at $zapprox1.8$. The slope is also found to increase with redshift, perhaps with an excess around $1.8leq z<2.9$. The increasing slope indicates that galaxies become more self-similar as redshift increases, implying that the specific SFR of high-mass galaxies increases over $z=0.2$ to $z=6.0$, becoming closer to that of low-mass galaxies. The excess in the slope at $1.8leq z<2.9$, if present, coincides with the peak of the cosmic star formation history.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا