Do you want to publish a course? Click here

Dust attenuation, bulge formation and inside-out cessation of star-formation in Star-Forming Main Sequence galaxies at z~2

89   0   0.0 ( 0 )
 Added by Sandro Tacchella
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive two-dimensional dust attenuation maps at $sim1~mathrm{kpc}$ resolution from the UV continuum for ten galaxies on the $zsim2$ Star-Forming Main Sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further obscuration in addition to the UV-based correction, though our sample does not include the most heavily obscured, massive galaxies. The individual rest-frame $V$-band dust attenuation (A$_{rm V}$) radial profiles scatter around an average profile that gently decreases from $sim1.8$ mag in the center down to $sim0.6$ mag at $sim3-4$ half-mass radii. We use these maps to correct UV- and H$alpha$-based star-formation rates (SFRs), which agree with each other. At masses $<10^{11}~M_{rm sun}$, the dust-corrected specific SFR (sSFR) profiles are on average radially constant at a mass-doubling timescale of $sim300~mathrm{Myr}$, pointing at a synchronous growth of bulge and disk components. At masses $>10^{11}~M_{rm sun}$, the sSFR profiles are typically centrally-suppressed by a factor of $sim10$ relative to the galaxy outskirts. With total central obscuration disfavored, this indicates that at least a fraction of massive $zsim2$ SFMS galaxies have started their inside-out star-formation quenching that will move them to the quenched sequence. In combination with other observations, galaxies above and below the ridge of the SFMS relation have respectively centrally-enhanced and centrally-suppressed sSFRs relative to their outskirts, supporting a picture where bulges are built due to gas `compaction that leads to a high central SFR as galaxies move towards the upper envelope of SFMS.



rate research

Read More

We use deep panchromatic datasets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared and VLA radio continuum imaging, to explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation of star-forming galaxies to z~4. Our main results can be summarized as follows: i) the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while its normalization keeps increasing with redshift; ii) for the first time here we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated, strikingly we find that this attenuation relation evolves very weakly with redshift, the amount of dust attenuation increasing by less than 0.3 magnitudes over the redshift range [0.5-4] for a fixed stellar mass, as opposed to a tenfold increase of star formation rate; iv) the correlation between dust attenuation and the UV spectral slope evolves in redshift, with the median UV spectral slope of star-forming galaxies becoming bluer with redshift. By z~3, typical UV slopes are inconsistent, given the measured dust attenuation, with the predictions of commonly used empirical laws. Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than stellar reddening at all redshifts probed, and also that the amount of dust attenuation at a fixed ISM metallicity increases with redshift. We speculate that our results support evolving ISM conditions of typical star-forming galaxies such that at z~1.5 Main Sequence galaxies have ISM conditions getting closer to those of local starbursts.
144 - Weichen Wang 2017
This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z=0.4-1.4 star-forming main sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation rate (sSFR). By replacing J with I band, a new calibration method suitable for use with ACS+WFC3 data is created (i.e. UVI diagram). Using a multi-wavelength multi-aperture photometry catalogue based on CANDELS, UVI colour profiles of 1328 galaxies are stacked in stellar mass and redshift bins. The resulting colour gradients, covering a radial range of 0.2--2.0 effective radii, increase strongly with galaxy mass and with global $A_V$. Colour gradient directions are nearly parallel to the Calzetti extinction vector, indicating that dust plays a more important role than stellar population variations. With our calibration, the resulting $A_V$ profiles fall much more slowly than stellar mass profiles over the measured radial range. sSFR gradients are nearly flat without central quenching signatures, except for $M_*>10^{10.5} M_{odot}$, where central declines of 20--25 per cent are observed. Both sets of profiles agree well with previous radial sSFR and (continuum) $A_V$ measurements. They are also consistent with the sSFR profiles and, if assuming a radially constant gas-to-dust ratio, gas profiles in recent hydrodynamic models. We finally discuss the striking findings that SFR scales with stellar mass density in the inner parts of galaxies, and that dust content is high in the outer parts despite low stellar-mass surface densities there.
We use high-resolution continuum images obtained at 870microns with the Atacama Large Millimeter Array (ALMA) to probe the surface density of star-formation in z~2 galaxies and study the different physical properties between galaxies within and above the star-formation main sequence of galaxies. This sample of eight star-forming galaxies at z~2 selected among the most massive Herschel galaxies in the GOODS-South field is supplemented with eleven galaxies from the public data of the 1.3 mm survey of the Hubble Ultra-Deep Field. ALMA reveals systematically dense concentrations of dusty star-formation close to the center of the stellar component of the galaxies. We identify two different starburst regimes: (i) the classical population of starbursts located above the SFR-M* main sequence, with enhanced gas fractions and short depletion times and (ii) a sub-population of galaxies located within the scatter of the main sequence that experience compact star formation with depletion timescales typical of starbursts of ~150 Myr. In both starburst populations, the far infrared and UV are distributed in distinct regions and dust-corrected star formation rates estimated using UV-optical-NIR data alone underestimate the total star formation rate. Starbursts hidden in the main sequence show instead the lowest gas fractions of our sample and could represent the last stage of star-formation before they become passive. Being Herschel-selected, these main sequence galaxies are located in the high-mass end of the main sequence, hence we do not know whether these starbursts hidden in the main sequence also exist below 10^11 Msun. Active galactic nuclei are found to be ubiquitous in these compact starbursts, suggesting that the triggering mechanism also feeds the central black hole or that the active nucleus triggers star formation.
Dust attenuation in galaxies has been extensively studied nearby, however, there are still many unknowns regarding attenuation in distant galaxies. We contribute to this effort using observations of star-forming galaxies in the redshift range z = 0.05-0.15 from the DYNAMO survey. Highly star-forming DYNAMO galaxies share many similar attributes to clumpy, star-forming galaxies at high redshift. Considering integrated Sloan Digital Sky Survey observations, trends between attenuation and other galaxy properties for DYNAMO galaxies are well matched to star-forming galaxies at high redshift. Integrated gas attenuations of DYNAMO galaxies are 0.2-2.0 mags in the V-band, and the ratio of stellar E(B-V) and gas E(B-V) is 0.78-0.08 (compared to 0.44 at low redshift). Four highly star-forming DYNAMO galaxies were observed at H-alpha using the Hubble Space Telescope and at Pa-alpha using integral field spectroscopy at Keck. The latter achieve similar resolution (~0.8-1 kpc) to our HST imaging using adaptive optics, providing resolved observations of gas attenuations of these galaxies on sub-kpc scales. We find < 1.0 mag of variation in attenuation (at H-alpha) from clump to clump, with no evidence of highly attenuated star formation. Attenuations are in the range 0.3-2.2 mags in the V band, consistent with attenuations of low redshift star-forming galaxies. The small spatial variation on attenuation suggests that a majority of the star-formation activity in these four galaxies occurs in relatively unobscured regions and, thus, star-formation is well characterised by our H-alpha observations.
Star formation rate (SFR) measurements at z>4 have relied mostly on rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on IRX-$beta$ relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4<z<5.9. We use stacks of continuum images to measure average infrared (IR) luminosities taking into account both detected and undetected sources. Based on these measurements, we measure the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at $zsim4.5$ and $zsim5.5$. We find that the main sequence and sSFR do not evolve significantly between $zsim4.5$ and $zsim5.5$, as opposed to lower redshifts. We develop a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift but even at $zsim5.5$ it constitutes around 61% of the total SFRD.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا