Do you want to publish a course? Click here

Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data

220   0   0.0 ( 0 )
 Added by S. Gwynne Crowder
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the universe. We carry out a search for the stochastic background with the latest data from LIGO and Virgo. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega_GW(f)=Omega_alpha*(f/f_ref)^alpha, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha=0, we constrain the energy density of the stochastic background to be Omega_GW(f)<5.6x10^-6. For the 600-1000 Hz band, Omega_GW(f)<0.14*(f/900 Hz)^3, a factor of 2.5 lower than the best previously reported upper limits. We find Omega_GW(f)<1.8x10^-4 using a spectral index of zero for 170-600 Hz and Omega_GW(f)<1.0*(f/1300 Hz)^3 for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.



rate research

Read More

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGOs first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $Omega_0<1.7times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20) Msun coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for non-spinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with non-spinning components of mass between 19 and 28 Msun of 3.3 times 10^-7 mergers /Mpc^3 /yr.
We integrate the entire, publicly available, Advanced LIGO (ALIGO) data set to obtain maximum-likelihood constraint maps of the Stochastic Gravitational-Wave Background (SGWB). From these we derive limits on the energy density of the stochastic background $Omega_{rm GW}$, and its anisotropy. We find 95% confident limits $Omega_{rm GW} < 5.2times 10^{-8}$ at $50$ Hz for a spectral index $alpha=2/3$ consistent with a stochastic background due to inspiral events and $Omega_{rm GW} < 3.2times 10^{-7}$ for a scale (frequency) invariant spectrum. We also report upper limits on the angular power spectra $C_ell$ for three broadband integrations of the data. Finally we present an estimate where we integrate the data into ten separate spectral bins as a first attempt to carry out a model-independent estimate the SGWB and its anisotropies.
A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of $Omega_{rm GW}(f) = Omega_3 (f/900 mathrm{Hz})^3$, of $Omega_3 < 0.33$, assuming a value of the Hubble parameter of $h_{100}=0.72$. These new limits are a factor of seven better than the previous best in this frequency band.
With approximately 50 binary black hole events detected by LIGO/Virgo to date and many more expected in the next few years, gravitational-wave astronomy is shifting from individual-event analyses to population studies. We perform a hierarchical Bayesian analysis on the GWTC-2 catalog by combining several astrophysical formation models with a population of primordial black holes. We compute the Bayesian evidence for a primordial population compared to the null hypothesis, and the inferred fraction of primordial black holes in the data. We find that these quantities depend on the set of assumed astrophysical models: the evidence for primordial black holes against an astrophysical-only multichannel model is decisively favored in some scenarios, but it is significantly reduced in the presence of a dominant stable-mass-transfer isolated formation channel. The primordial channel can explain mergers in the upper mass gap such as GW190521, but (depending on the astrophysical channels we consider) a significant fraction of the events could be of primordial origin even if we neglected GW190521. The tantalizing possibility that LIGO/Virgo may have already detected black holes formed after inflation should be verified by reducing uncertainties in astrophysical and primordial formation models, and it may ultimately be confirmed by third-generation interferometers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا