Do you want to publish a course? Click here

Structural distortion below the Neel temperature in spinel GeCo$_2$O$_4$

229   0   0.0 ( 0 )
 Added by Moureen Kemei
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A structural phase transition from cubic $Fdbar{3}m$ to tetragonal $I$4$_1$/$amd$ symmetry with $c/a >$ 1 is observed at $T_{rm{S}}$ = 16 K in spinel GeCo$_2$O$_4$ below the Neel temperature $T_N$ = 21 K. Structural and magnetic ordering appear to be decoupled with the structural distortion occurring at 16 K while magnetic order occurs at 21 K as determined by magnetic susceptibility and heat capacity measurements. An elongation of CoO$_6$ octahedra is observed in the tetragonal phase of GeCo$_2$O$_4$. We present the complete crystallographic description of GeCo$_2$O$_4$ in the tetragonal $I$4$_1$/$amd$ space group and discuss the possible origin of this distortion in the context of known structural transitions in magnetic spinels. GeCo$_2$O$_4$ exhibits magnetodielectric coupling below $T_{rm{N}}$. The related spinels GeFe$_2$O$_4$ and GeNi$_2$O$_4$ have also been examined for comparison. Structural transitions were not detected in either compound down to $T approx$ 8 K. Magnetometry experiments reveal in GeFe$_2$O$_4$ a second antiferromagnetic transition, with $T_{rm{N1}}$ = 7.9 K and $T_{rm{N2}}$ = 6.2 K, that was previously unknown, and that bear a similarity to the magnetism of GeNi$_2$O$_4$.



rate research

Read More

The local structure of the spinel LiRh$_2$O$_4$ has been studied using atomic pair distribution function (PDF) analysis of powder x-ray diffraction data. This measurement is sensitive to the presence of short Rh-Rh bonds that form due to dimerization of Rh$^{4+}$ ions on the pyrochlore sublattice, independent of the existence of long range order. We show that structural dimers exist in the low-temperature phase, as previously supposed, with a bond shortening of $Delta r sim 0.15$ AA . The dimers persist up to 350 K, well above the insulator-metal transition, with $Delta r$ decreasing in magnitude on warming. Such behavior is inconsistent with the Fermi surface nesting-driven Peierls transition model. Instead, we argue that LiRh$_2$O$_4$ should properly be described as a strongly correlated system.
We describe powder and single-crystal inelastic neutron scattering experiments on a spinel-type antiferromagnet GeCo$_2$O$_4$, represented by an effective total angular momentum J_eff = 1/2. Several types of non-dispersive short-range magnetic excitations were discovered. The scattering intensity maps in $vec{Q}$ space are well reproduced by dynamical structure factor analyses using molecular model Hamiltonians. The results of analyses strongly suggest that the molecular excitations below T_N arise from a hidden molecular-singlet ground state, in which ferromagnetic subunits are antiferromagnetically coupled. The quasielastic excitations above T_N are interpreted as its precursor. A combination of frustration and J_eff = 1/2 might induce these quantum phenomena.
Ultrasound velocity measurements of the orbitally-frustrated GeCo$_2$O$_4$ reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-range ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.
In the spinel compound GeCo$_2$O$_4$, the Co$^{2+}$ pyrochlore sublattice presents remarkable magnetic field-induced behaviors that we unveil through neutron and X-ray single-crystal diffraction. The Neel ordered magnetic phase is entered through a structural lowering of the cubic symmetry. In this phase, when a magnetic field is applied along a 2-fold cubic direction, a spin-flop transition of one fourth of the magnetic moments releases the magnetic frustration and triggers magnetostructural effects. At high field, these ultimately lead to an unusual spin reorientation associated to structural changes.
AB$_2$O$_4$ normal spinels with a magnetic B site can host a variety of magnetic and orbital frustrations leading to spin-liquid phases and field-induced phase transitions. Here we report the first epitaxial growth of (111)-oriented MgCr$_2$O$_4$ thin films. By characterizing the structural and electronic properties of films grown along (001) and (111) directions, the influence of growth orientation has been studied. Despite distinctly different growth modes observed during deposition, the comprehensive characterization reveals no measurable disorder in the cation distribution nor multivalency issue for Cr ions in either orientation. Contrary to a naive expectation, the (111) stabilized films exhibit a smoother surface and a higher degree of crystallinity than (001)-oriented films. The preference in growth orientation is explained within the framework of heteroepitaxial stabilization in connection to a significantly lower (111) surface energy. These findings open broad opportunities in the fabrication of 2D kagome-triangular heterostructures with emergent magnetic behavior inaccessible in bulk crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا