No Arabic abstract
Let $F$ be a totally real field of degree $g$, and let $p$ be a prime number. We construct $g$ partial Hasse invariants on the characteristic $p$ fiber of the Pappas-Rapoport splitting model of the Hilbert modular variety for $F$ with level prime to $p$, extending the usual partial Hasse invariants defined over the Rapoport locus. In particular, when $p$ ramifies in $F$, we solve the problem of lack of partial Hasse invariants. Using the stratification induced by these generalized partial Hasse invariants on the splitting model, we prove in complete generality the existence of Galois pseudo-representations attached to Hecke eigenclasses of paritious weight occurring in the coherent cohomology of Hilbert modular varieties $mathrm{mod}$ $p^m$, extending a previous result of M. Emerton and the authors which required $p$ to be unramified in $F$.
This article has three goals. First, we generalize the result of Deuring and Serre on the characterization of supersingular locus of modular curves to all Shimura varieties given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura varieties in the inert case. Third, as an application to number theory, we use the previous results to study the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch--Kato conjecture.
In this note, we prove that there exists a classical Hilbert modular cusp form over Q(sqrt{5}) of partial weight one which does not arise from the induction of a Grossencharacter from a CM extension of Q(sqrt{5}).
Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space, the eigenvariety is a disjoint union of countably infinitely many connected components which are finite over the weight space; on each fixed connected component, the ratios between the $U_mathfrak{p}$-slopes of points and the $p$-adic valuations of the $mathfrak{p}$-parameters are bounded by explicit numbers, for all primes $mathfrak{p}$ of $F$ over $p$. Applying Hansens $p$-adic interpolation theorem, we are able to transfer our results to Hilbert modular eigenvarieties. In particular, we prove that on every irreducible component of Hilbert modular eigenvarieties, as a point moves towards the boundary, its $U_p$ slope goes to zero. In the case of eigencurves, this completes the proof of Coleman-Mazurs `halo conjecture.
We prove that amongst all real quadratic fields and all spaces of Hilbert modular forms of full level and of weight $2$ or greater, the product of two Hecke eigenforms is not a Hecke eigenform except for finitely many real quadratic fields and finitely many weights. We show that for $mathbb Q(sqrt 5)$ there are exactly two such identities.
We prove that there is a natural plectic weight filtration on the cohomology of Hilbert modular varieties in the spirit of Nekovar and Scholl. This is achieved with the help of Morels work on weight t-structures and a detailed study of partial Frobenius. We prove in particular that the partial Frobenius extends to toroidal and minimal compactifications.