No Arabic abstract
Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space, the eigenvariety is a disjoint union of countably infinitely many connected components which are finite over the weight space; on each fixed connected component, the ratios between the $U_mathfrak{p}$-slopes of points and the $p$-adic valuations of the $mathfrak{p}$-parameters are bounded by explicit numbers, for all primes $mathfrak{p}$ of $F$ over $p$. Applying Hansens $p$-adic interpolation theorem, we are able to transfer our results to Hilbert modular eigenvarieties. In particular, we prove that on every irreducible component of Hilbert modular eigenvarieties, as a point moves towards the boundary, its $U_p$ slope goes to zero. In the case of eigencurves, this completes the proof of Coleman-Mazurs `halo conjecture.
We prove that amongst all real quadratic fields and all spaces of Hilbert modular forms of full level and of weight $2$ or greater, the product of two Hecke eigenforms is not a Hecke eigenform except for finitely many real quadratic fields and finitely many weights. We show that for $mathbb Q(sqrt 5)$ there are exactly two such identities.
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Coleman. The key ingredient of the proof is giving an explicit description of the Goren-Oort stratification of the special fiber of the Hilbert modular variety. A byproduct of the proof is to show that, at least when $p$ is inert, of the rigid cohomology of the ordinary locus has the same image as the classical forms in the Grothendieck group of Hecke modules.
In this note, we prove that there exists a classical Hilbert modular cusp form over Q(sqrt{5}) of partial weight one which does not arise from the induction of a Grossencharacter from a CM extension of Q(sqrt{5}).
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for the Weil representation associated to the discriminant form for the lattice with Gram matrix $(2)$. With such an isomorphism, we prove the Zagier duality and write down the Borcherds lifts explicitly.