Do you want to publish a course? Click here

Renormalizability of Yang-Mills theory with Lorentz violation and gluon mass generation

145   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We show that pure Yang-Mills theories with Lorentz violation are renormalizable to all orders in perturbation theory. To do this, we employ the algebraic renormalization technique. Specifically, we control the breaking terms with a suitable set of external sources which, eventually, attain certain physical values. The Abelian case is also analyzed as a starting point. The main result is that the renormalizability of the usual Maxwell and Yang-Mills sectores are both left unchanged. Furthermore, in contrast to Lorentz violating QED, the odd CPT violation sector of Yang-Mills theories renormalizes independently. Moreover, the method induces, in a natural way, mass terms for the gauge field while the photon remains massless (at least n the sense of a Proca-like term). The entire analysis is carried out at the Landau gauge.



rate research

Read More

The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed from group and front velocities for both, spacelike and timelike background tensors. It is show that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary, if one takes the Faddeev-Popov ghost into account.
In this work, we analyzed a recent proposal to detect $SU(N)$ continuum Yang-Mills sectors labeled by center vortices, inspired by Laplacian-type center gauges in the lattice. Initially, after the introduction of appropriate external sources, we obtained a rich set of sector-dependent Ward identities, which can be used to control the form of the divergences. Next, we were able to show the all-order multiplicative renormalizability of the center-vortex free sector. These are important steps towards the establishment of a first principles, well-defined, and calculable Yang-Mills ensemble.
We analyze the Chern-Simons-like term generation in the CPT-odd Lorentz-violating Yang-Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern-Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable.
Studying the gauge-invariant renormalizability of four-dimensional Yang-Mills theory using the background field method and the BV-formalism, we derive a classical master-equation homogeneous with respect to the antibracket by introducing antifield partners to the background fields and parameters. The constructed model can be renormalized by the standard method of introducing counterterms. This model does not have (exact) multiplicative renormalizability but it does have this property in the physical sector (quasimultiplicative renormalizability).
Recently, a new procedure to quantize the $SU(N)$ Yang-Mills theory in the nonperturbative regime was proposed. The idea is to divide the configuration space ${A_mu}$ into sectors labeled by different topological degrees of freedom and fix the gauge separately on each one of them. As Singers theorem on gauge copies only refers to gauge fixing conditions that are global in ${A_mu}$, this construction might avoid the Gribov problem. In this work, we present a proof of the renormalizability in the center-vortex sectors, thus establishing the calculability of the Yang-Mills center-vortex ensemble.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا