Do you want to publish a course? Click here

Multiplicative renormalizability of Yang-Mills theory with the background field method in the BV-formalism

106   0   0.0 ( 0 )
 Added by Peter M. Lavrov
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Studying the gauge-invariant renormalizability of four-dimensional Yang-Mills theory using the background field method and the BV-formalism, we derive a classical master-equation homogeneous with respect to the antibracket by introducing antifield partners to the background fields and parameters. The constructed model can be renormalized by the standard method of introducing counterterms. This model does not have (exact) multiplicative renormalizability but it does have this property in the physical sector (quasimultiplicative renormalizability).



rate research

Read More

In this work, we analyzed a recent proposal to detect $SU(N)$ continuum Yang-Mills sectors labeled by center vortices, inspired by Laplacian-type center gauges in the lattice. Initially, after the introduction of appropriate external sources, we obtained a rich set of sector-dependent Ward identities, which can be used to control the form of the divergences. Next, we were able to show the all-order multiplicative renormalizability of the center-vortex free sector. These are important steps towards the establishment of a first principles, well-defined, and calculable Yang-Mills ensemble.
The background gauge renormalization of the first order formulation of the Yang-Mills theory is studied by using the BRST identities. Together with the background symmetry, these identities allow for an iterative proof of renormalizability to all orders in perturbation theory. However, due to the fact that certain improper diagrams which violate the BRST symmetry should be removed, the renormalizability must be deduced indirectly. The recursive method involves rescalings and mixings of the fields, which lead to a renormalized effective action for the background field theory.
We show that pure Yang-Mills theories with Lorentz violation are renormalizable to all orders in perturbation theory. To do this, we employ the algebraic renormalization technique. Specifically, we control the breaking terms with a suitable set of external sources which, eventually, attain certain physical values. The Abelian case is also analyzed as a starting point. The main result is that the renormalizability of the usual Maxwell and Yang-Mills sectores are both left unchanged. Furthermore, in contrast to Lorentz violating QED, the odd CPT violation sector of Yang-Mills theories renormalizes independently. Moreover, the method induces, in a natural way, mass terms for the gauge field while the photon remains massless (at least n the sense of a Proca-like term). The entire analysis is carried out at the Landau gauge.
We construct a vector gauge invariant transverse field configuration $V^H$, consisting of the well-known superfield $V$ and of a Stueckelberg-like chiral superfield. The renormalizability of the Super Yang Mills action in the Landau gauge is analyzed in the presence of a gauge invariant mass term $m^2 int dV mathcal{M}(V^H)$, with $mathcal{M}(V^H)$ a power series in $V^H$. Unlike the original Stueckelberg action, the resulting action turns out to be renormalizable to all orders.
132 - P.M. Lavrov 2021
In the present paper the Yang-Mills theory in the first order formalism is studied. On classical level the first order formulation is equivalent to the standard second order description of the Yang-Mills theory. It is proven that both formulations remain equivalent on quantum level as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا