No Arabic abstract
The most promising near-term observable of the cosmic dark age prior to widespread reionization (z~15-200) is the sky-averaged lambda 21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the lambda 21 cm background (but that are anticipated to vary monotonically and gradually with frequency). Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the lambda 21 cm signal after deprojecting a ~5th order polynomial in log( u). However, we find that the foreground signal is corrupted by the frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Much of our study focuses on the Large-aperture Experiment to detect the Dark Age (LEDA), which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements does not compromise extraction of the lambda 21 cm signal for a range of cosmological models after fitting a 7th order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.
Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen HI through its 21cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy properties or its equation of state. A novel approach, called intensity mapping can be used to map the HI distribution, using radio interferometers with large instantaneous field of view and waveband. In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam instruments for the observation of large scale structures and BAO oscillations in 21cm and we discuss the problem of foreground removal. For each configuration, we determine instrument response by computing the (u,v) or Fourier angular frequency plane coverage using visibilities. The (u,v) plane response is the noise power spectrum, hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. We have computed the noise power spectrum for different instrument configuration as well as the extracted LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey. We show that a radio instrument with few hundred simultaneous beams and a collecting area of ~10000 m^2 will be able to detect BAO signal at redshift z ~ 1 and will be competitive with optical surveys.
Efforts are being made to observe the 21-cm signal from the cosmic dawn using sky-averaged observations with individual radio dipoles. In this paper, we develop a model of the observations accounting for the 21-cm signal, foregrounds, and several major instrumental effects. Given this model, we apply Markov Chain Monte Carlo techniques to demonstrate the ability of these instruments to separate the 21-cm signal from foregrounds and quantify their ability to constrain properties of the first galaxies. For concreteness, we investigate observations between 40 and 120 MHz with the proposed DARE mission in lunar orbit, showing its potential for science return.
Emulation of the Global (sky-averaged) 21-cm signal from the Cosmic Dawn and Epoch of Reionization with neural networks has been shown to be an essential tool for physical signal modelling. In this paper we present globalemu, a Global 21-cm signal emulator that uses redshift as a character defining variable along side a set of astrophysical parameters to estimate the brightness temperature of the 21-cm signal. Combined with a physically motivated pre-processing of the data this makes for a reliable and fast emulator that is relatively insensitive to the neural network design. A single high resolution signal can be emulated in 1.3 ms when using globalemu in comparison to 133 ms, a factor of 102 improvement, when using the existing public state of the art emulator 21cmGEM evaluated with the same computing power. We illustrate, with the same training and test data used for 21cmGEM, that globalemu is almost twice as accurate as 21cmGEM and for 95% of models in a test set of $approx1,700$ we can achieve a RMSE of $leq 5.37$ mK and a mean RMSE of 2.52 mK across the band z = 7 -28 (approximately 10% the expected noise of 25 mK for the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH)). Further, globalemu provides a flexible framework in which the neutral fraction history and Global signal models with updated astrophysics can be emulated easily. The emulator is pip installable and available at: https://github.com/htjb/globalemu. globalemu will be used by the REACH collaboration to perform physical signal modelling inside a Bayesian nested sampling loop.
The separation of cosmological signal from astrophysical foregrounds is a fundamental challenge for any effort to probe the evolution of neutral hydrogen during the Cosmic Dawn and epoch of reionization (EoR) using the 21 cm hyperfine transition. Foreground separation is made possible by their intrinsic spectral smoothness, making them distinguishable from spectrally complex cosmological signal even though they are ~5 orders of magnitude brighter. Precisely calibrated radio interferometers are essential to maintaining the smoothness and thus separability of the foregrounds. One powerful calibration strategy is to use redundant measurements between pairs of antennas with the same physical separation in order to solve for each antennas spectral response without reference to a sky model. This strategy is being employed by the Hydrogen Epoch of Reionization Array (HERA), a large radio telescope in South Africa that is now observing while being built out to 350 14-m dishes. However, the deviations from perfect redundancy inherent in any real radio telescope complicate the calibration problem. Using simulations of HERA, we show how calibration with antenna-to-antenna variations in dish construction and placement generally lead to spectral structure in otherwise smooth foregrounds that significantly reduces the number of cosmological modes available to a 21 cm measurement. However, we also show that this effect can be largely eliminated by a modified redundant-baseline calibration strategy that relies predominantly on short baselines.
In this letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling ~41 deg. sq. and 190 hours of radio integration time. The cross-correlation constrains Omega_HI b_HI r = [0.43 pm 0.07 (stat.) pm 0.04(sys.)] x 10^-3, where Omega_HI is the neutral hydrogen HI fraction, r is the galaxy-hydrogen correlation coefficient, and b_HI is the HI bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z ~ 0.8 both in its precision and in the range of scales probed.