Do you want to publish a course? Click here

Chasing the Identification of ASCA Galactic Objects (ChIcAGO) - An X-ray Survey of Unidentified Sources in the Galactic Plane I: Source Sample and Initial Results

109   0   0.0 ( 0 )
 Added by Gemma Anderson
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the F_x ~ 10^-13 to 10^-11 erg cm^-2 s^-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multi-wavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3 of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the F_x ~ 10^-13 to 10^-11 erg cm^-2 s^-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding-wind binaries, X-ray binaries, and magnetars. There is also a fifth population that is still unidentified but, based on its X-ray and infrared properties, likely comprise partly of Galactic sources and partly of active galactic nuclei.



rate research

Read More

119 - A.A.Lutovinov 2015
We present the results of the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AXJ173548-3207, AXJ173628-3141, AXJ1739.5-2910, AXJ1740.4-2856, AXJ1740.5-2937, AXJ1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AXJ173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AXJ1739.5-2910, AXJ1740.5-2937, AXJ1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AXJ1740.4-2856) is an M dwarf, and another one (AXJ173548-3207) may be a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band have been estimated; analysis of deep INTEGRAL Galactic Center observations has not revealed a statistically significant flux at energies higher 20 keV from any of them.
The X-ray emission from the central region of the Galactic plane, |l|<45 deg and |b|<0.4 deg, was studied in the 0.7-10 keV energy band with a spatial resolution of ~3 with the ASCA observatory. We developed a new analysis method for the ASCA data to resolve discrete sources from the extended Galactic ridge X-ray emission (GRXE). We resolved 163 discrete sources with a flux down to 10^-12.5 ergs cm^-2 s^-1 and determined the intensity variations of the GRXE as a function of the Galactic longitude with a spatial resolution of ~1 deg. The longitudinal variation of the GRXE in the energy band above 4 keV shows a large enhancement within |l|<30 deg. This suggests a strong enhancement of X-ray emissivity inside the 4-kpc arms. Searches for identifications of the resolved sources with cataloged X-ray sources and optical stars show that the 66% are unidentified. Spectral analysis of each source shows that a large number of the unidentified sources have hard X-ray spectra. We classified the sources into several groups according to the spectra and analyzed the spectra summed within each group. Possible X-ray origins of these sources are discussed based on the grouping analysis. Also, we derived the LogN-LogS relations of the resolved sources in the energy bands below and above 2 keV. The obtained LogN-LogS relation of the Galactic X-ray sources above 2 keV is represented by a power-law with an index of -0.79+/-0.07. This flat LogN-LogS relation suggests that the spatial distribution of the sources should have an arm-like structure in which the Solar system is included. The integrated surface brightness of the resolved sources is about 10% of the total GRXE in both energy bands. The approximately 90% of the emission remaining is still unresolved.
We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)
The distribution on the sky of unidentified sources at the highest energies where such a population is evident is investigated. For this purpose, sources without identification in the first Fermi-LAT catalog >10 GeV (1FHL) that are good candidates for detection above the 50-100 GeV regime are selected. The distributions of these objects around the Galactic and super-galactic plane are explored. By using a Kolmogorov-Smirnov test it is examined if these sources are distributed homogeneously around these planes. Surprisingly, an indication for an inhomogeneous distribution is found for the case of the super-galactic plane where a homogeneous distribution can be excluded by a confidence level of 95%. On a 90% confidence level also a homogeneous distribution of sources around the Galactic plane can be excluded. For the hypothesis that this reflects the true distribution of sources rather than a statistical fluctuation, implications for the underlying source populations are discussed.
We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multi-wavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 $pm$ 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an AGN or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In 4 cases we identify the sources as binary stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا