Do you want to publish a course? Click here

The X-ray source content of the XMM-Newton Galactic Plane Survey

139   0   0.0 ( 0 )
 Added by C. Motch
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)



rate research

Read More

215 - R.L.C. Starling 2010
We present deep Swift follow-up observations of a sample of 94 unidentified X-ray sources from the XMM-Newton Slew Survey. The X-ray Telescope on-board Swift detected 29% of the sample sources; the flux limits for undetected sources suggests the bulk of the Slew Survey sources are drawn from one or more transient populations. We report revised X-ray positions for the XRT-detected sources, with typical uncertainties of 2.9, reducing the number of catalogued optical matches to just a single source in most cases. We characterise the sources detected by Swift through their X-ray spectra and variability and via UVOT photometry and catalogued nIR, optical and radio observations. Six sources can be associated with known objects and 8 may be associated with unidentified ROSAT sources within the 3-sigma error radii of our revised X-ray positions. We find 10 of the 30 XRT-detected sources are clearly stellar in nature, including one periodic variable star and 2 high proper motion stars. For 11 sources we propose an AGN classification, among which 4 are detected with BAT and 3 have redshifts spanning z = 0.2 - 0.9 obtained from the literature or from optical spectroscopy presented here. The 67 Slew Survey sources we do not detect with Swift are studied via their characteristics in the Slew Survey and by comparison with the XRT and BAT detected population. We suggest that these are mostly if not all extragalactic, though unlikely to be highly absorbed sources in the X-rays such as Compton thick AGN. A large number of these are highly variable soft X-ray sources. A small fraction of mainly hard-band detections may be spurious. This follow-up programme brings us a step further to completing the identifications of a substantial sample of XMM-Newton Slew Survey sources, important for understanding the nature of the transient sky and allowing flux-limited samples to be constructed.
116 - L.Sidoli 2011
We report on a 40 ks long, uninterrupted X-ray observation of the candidate supergiant fast X-ray transient (SFXT) IGRJ16418-4532 performed with XMM-Newton on February 23, 2011. This high mass X-ray binary lies in the direction of the Norma arm, at an estimated distance of 13 kpc. During the observation, the source showed strong variability exceeding two orders of magnitudes, never observed before from this source. Its X-ray flux varied in the range from 0.1 counts/s to about 15 counts/s, with several bright flares of different durations (from a few hundreds to a few thousands seconds) and sometimes with a quasi-periodic behavior. This finding supports the previous suggestion that IGRJ16418-4532 is a member of the SFXTs class. In our new observation we measured a pulse period of 1212+/-6 s, thus confirming that this binary contains a slowly rotating neutron star. During the periods of low luminosity the source spectrum is softer and more absorbed than during the flares. A soft excess is present below 2 keV in the cumulative flares spectrum, possibly due to ionized wind material at a distance similar to the neutron star accretion radius. The kind of X-ray variability displayed by IGRJ16418-4532, its dynamic range and time scale,together with the sporadic presence of quasi-periodic flaring, all are suggestive of a transitional accretion regime between pure wind accretion and full Roche lobe overflow. We discuss here for the first time this hypothesis to explain the behavior of IGRJ16418-4532 and, possibly, of other SFXTs with short orbital periods.
The XMM-Newton Survey Science Centre Consortium (SSC) develops software in close collaboration with the Science Operations Centre to perform a pipeline analysis of all XMM-Newton observations. In celebration of the 20th launch anniversary, the SSC has compiled the 4th generation of serendipitous source catalogues, 4XMM. The catalogue described here, 4XMM-DR9s, explores sky areas that were observed more than once by XMM-Newton. It was constructed from simultaneous source detection on the overlapping observations, which were bundled in groups (stacks). Stacking leads to a higher sensitivity, resulting in newly discovered sources and better constrained source parameters, and unveils long-term brightness variations. As a novel feature, positional rectification was applied beforehand. Observations with all filters and suitable camera settings were included. Exposures with a high background were discarded, which was determined through a statistical analysis of all exposures in each instrument configuration. The X-ray background maps used in source detection were modelled via adaptive smoothing with newly determined parameters. Source fluxes were derived for all contributing observations, irrespective of whether the source would be detectable in an individual observation. From 1,329 stacks with 6,604 contributing observations over repeatedly covered 300 square degrees in the sky, 4XMM-DR9s lists 288,191 sources. 218,283 of them were observed several times. Most stacks are composed of two observations, the largest one comprises 352. The number of observations of a source ranges from 1 to 40. Auxiliary products like X-ray images, long-term light curves, and optical finding charts are published as well. 4XMM-DR9s is considered a prime resource to explore long-term variability of X-ray sources discovered by XMM-Newton. Regular incremental releases including new public observations are planned.
We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range $10^{41} < L_{rm X} < 10^{44},{rm erg,s}^{-1}$, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243$-$49 HLX$-$1 and M82 X$-$1. From a statistical study, we conservatively estimate that up to $71 pm 11$ of these sources may be fore- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available datasets, in particular the VLA FIRST in radio, UKIDSS in the near-infrared, GALEX in the ultra-violet and CFHT Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g. active galactic nuclei, BL Lac objects, Galactic X-ray binaries or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.
We present the first broadband 0.3-25.0 kev X-ray observations of the bright ultraluminous X-ray source (ULX) Holmberg II X-1, performed by NuSTAR, XMM-Newton and Suzaku in September 2013. The NuSTAR data provide the first observations of Holmberg II X-1 above 10 keV, and reveal a very steep high-energy spectrum, similar to other ULXs observed by NuSTAR to date. These observations further demonstrate that ULXs exhibit spectral states that are not typically seen in Galactic black hole binaries. Comparison with other sources implies that Holmberg II X-1 accretes at a high fraction of its Eddington accretion rate, and possibly exceeds it. The soft X-ray spectrum (E<10 keV) appears to be dominated by two blackbody-like emission components, the hotter of which may be associated with an accretion disk. However, all simple disk models under-predict the NuSTAR data above ~10 keV and require an additional emission component at the highest energies probed, implying the NuSTAR data does not fall away with a Wien spectrum. We investigate physical origins for such an additional high-energy emission component, and favor a scenario in which the excess arises from Compton scattering in a hot corona of electrons with some properties similar to the very-high state seen in Galactic binaries. The observed broadband 0.3-25.0 keV luminosity inferred from these epochs is Lx = (8.1+/-0.1)e39 erg/s, typical for Holmberg II X-1, with the majority of the flux (~90%) emitted below 10 keV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا