Do you want to publish a course? Click here

Multi-particle emission in the decay of 31Ar

150   0   0.0 ( 0 )
 Added by Gunvor T. Koldste
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

A multi-hit capacity setup was used to study the decay of the dripline nucleus 31Ar, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the beta-delayed three-proton decay of 31Ar is presented for the first time together with a quantitative analysis of the beta-delayed two-proton-gamma-decay. A new method for determination of the spin of low-lying levels in the beta-proton-daughter 30S using proton-proton angular correlations is presented and used for the level at 5.2 MeV, which is found to be either a 3+ or 4+ level, with the data pointing towards the 3+. The half-life of 31Ar is found to be 15.1(3) ms. An improved analysis of the Fermi beta-strength gives a total measured branching for the beta-3p-decay of 3.60(44) %, which is lower than the theoretical value found to be 4.24(43) %. Finally the strongest gamma-transitions in the decay of 33Ar are shown including a line at 4734(3) keV associated to the decay of the IAS, which has not previously been identified.



rate research

Read More

We present for the first time precise spectroscopic information on the recently discovered decay mode beta-delayed 3p-emission. The detection of the 3p events gives an increased sensitivity to the high energy part of the Gamow-Teller strength distribution from the decay of 31Ar revealing that as much as 30% of the strength resides in the beta-3p decay mode. A simplified description of how the main decay modes evolve as the excitation energy increases in 31Cl is provided.
The beta decay of 31Ar, produced by fragmentation of a 36Ar beam at 880 MeV/nucleon, was investigated. Identified ions of 31Ar were stopped in a gaseous time projection chamber with optical readout allowing to record decay events with emission of protons. In addition to b{eta}-delayed emission of one and two protons we have clearly observed the beta-delayed three-proton branch. The branching ratio for this channel in 31Ar is found to be 0.07(2)%.
Resonances just above the proton threshold in 30S affect the 29P(p,gamma)30S reaction under astrophysical conditions. The (p,gamma)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and gamma partial widths of resonances in 30S. The widths are determined from the beta-2p and beta-p-gamma decay of 31Ar, which is produced at the ISOLDE facility at the European research organization CERN. Experimental limits on the ratio between the proton and gamma partial widths for astrophysical relevant levels in 30S have been found for the first time. A level at 4688(5) keV is identified in the gamma spectrum, and an upper limit on the proton to gamma width of 0.26 (95 % C.L.) is found. In the two-proton spectrum two levels at 5227(3) keV and 5847(4) keV are identified. These levels are previously seen to gamma decay and upper limits on the gamma to proton width of 0.5 and 9, respectively, (95 % C.L.) are found, where the latter differs from previous calculations.
The kinematics of two-neutron emission following the $beta$-decay of $^{11}$Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors was used to reject cosmic-ray and $gamma$-ray backgrounds by pulse-shape discrimination. Cross-talk events in which two detectors are fired by a single neutron were rejected using a filter tested on the $beta$-1n emitter $^9$Li. A large cross-talk rejection rate is obtained ($> 95 %$) over most of the energy range of interest. Application to $^{11}$Li data leads to a significant number of events interpreted as $beta$-2n decay. A discrete neutron line at $approx$ 2 MeV indicates sequential two-neutron emission, possibly from the unbound state at 10.6 MeV excitation energy in $^{11}$Be.
A new method to examine the time scale of particle emission from hot nuclei is explored. Excited projectile-like and target-like fragments decay as they separate following a peripheral heavy-ion collision. Their mutual Coulomb influence results in an anisotropic angular distribution of emitted particles, providing a measure of the particle emission time scale. Predictions of a schematic evaporation model are presented and compared to experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا