Do you want to publish a course? Click here

Study of multi-neutron emission in the $beta$-decay of $^{11}$Li

225   0   0.0 ( 0 )
 Added by Franck Delaunay
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The kinematics of two-neutron emission following the $beta$-decay of $^{11}$Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors was used to reject cosmic-ray and $gamma$-ray backgrounds by pulse-shape discrimination. Cross-talk events in which two detectors are fired by a single neutron were rejected using a filter tested on the $beta$-1n emitter $^9$Li. A large cross-talk rejection rate is obtained ($> 95 %$) over most of the energy range of interest. Application to $^{11}$Li data leads to a significant number of events interpreted as $beta$-2n decay. A discrete neutron line at $approx$ 2 MeV indicates sequential two-neutron emission, possibly from the unbound state at 10.6 MeV excitation energy in $^{11}$Be.



rate research

Read More

Coincidences between charged particles emitted in the $beta$-decay of $^{11}$Li were observed using highly segmented detectors. The breakup channels involving three particles were studied in full kinematics allowing for the reconstruction of the excitation energy of the $^{11}$Be states participating in the decay. In particular, the contribution of a previously unobserved state at 16.3 MeV in $^{11}$Be has been identified selecting the $alpha$ + $^7$He$toalpha$ + $^6$He+n channel. The angular correlations between the $alpha$ particle and the center of mass of the $^6$He+n system favors spin and parity assignment of 3/2$^-$ for this state as well as for the previously known state at 18 MeV.
The ($^{11}$B,$^{11}$Li) double charge-exchange reaction (DCER) at $E(^{11}$B)/$A$=80 MeV was measured for the first time to demonstrate the feasibility of the reaction for studying neutrino nuclear responses for double beta decays (DBD). The $^{13}$C($^{11}$B,$^{11}$Li)$^{13}$O reaction shows strengths at the ground state and low and high excitation giant resonance regions. The $^{56}$Fe ($^{11}$B,$^{11}$Li) $^{56}$Ni reaction shows the large strengths in the possible double giant resonance region and beyond, but shows no strengths in the low excitation region below 5 MeV, suggesting strong concentration of the DBD strength at the high excitation region. The DCER is used to evaluate the spin isospin strengths relevant to DBD responses.
The neutron-rich $^{11}$Li halo nucleus is unique among nuclei with known separation energies by its ability to emit a proton and a neutron in a $beta$ decay process. The branching ratio towards this rare decay mode is evaluated within a three-body model for the initial bound state and with Coulomb three-body final scattering states. The branching ratio should be comprised between two extreme cases, i.e. a lower bound $6 times 10^{-12}$ obtained with a pure Coulomb wave and an upper bound $5 times 10^{-10}$ obtained with a plane wave. A simple model with modified Coulomb waves provides plausible values between between $0.8 times 10^{-10}$ and $2.2 times 10^{-10}$ with most probable total energies of the proton and neutron between 0.15 and 0.3 MeV.
134 - Y. Kubota , A. Corsi , G. Authelet 2020
The formation of a dineutron in the nucleus $^{11}$Li is found to be localized to the surface region. The experiment measured the intrinsic momentum of the struck neutron in $^{11}$Li via the $(p,pn)$ knockout reaction at 246 MeV/nucleon. The correlation angle between the two neutrons is, for the first time, measured as a function of the intrinsic neutron momentum. A comparison with reaction calculations reveals the localization of the dineutron at $rsim3.6$ fm. The results also support the density dependence of dineutron formation as deduced from Hartree-Fock-Bogoliubov calculations for nuclear matter.
Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich 94Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled introducing an enhancement of one order-of-magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proved to be correct, leads to a similar increase in the (n,gamma) cross section that would have an impact on r-process abundance calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا