Do you want to publish a course? Click here

A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law

170   0   0.0 ( 0 )
 Added by Zhenlin Guo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate numerically a diffuse interface model for the Navier-Stokes equation with fluid-fluid interface when the fluids have different densities cite{Lowengrub1998}. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a $C^0$ finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with $C^0$ finite element. A Newtons method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.



rate research

Read More

146 - Zhaoyang Qiu 2020
Using the Maslowski and Seidler method, the existence of invariant measure for 2-dimensional stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise is proved in state space $L_x^2times H^1$, working with the weak topology. Also, the existence of global pathwise solution is investigated using the stochastic compactness argument.
66 - L. Lin , N. Ni , Z. Yang 2019
We present an energy-stable scheme for simulating the incompressible Navier-Stokes equations based on the generalized Positive Auxiliary Variable (gPAV) framework. In the gPAV-reformulated system the original nonlinear term is replaced by a linear term plus a correction term, where the correction term is put under control by an auxiliary variable. The proposed scheme incorporates a pressure-correction type strategy into the gPAV procedure, and it satisfies a discrete energy stability property. The scheme entails the computation of two copies of the velocity and pressure within a time step, by solving an individual de-coupled linear equation for each of these field variables. Upon discretization the pressure linear system involves a constant coefficient matrix that can be pre-computed, while the velocity linear system involves a coefficient matrix that is updated periodically, once every $k_0$ time steps in the current work, where $k_0$ is a user-specified integer. The auxiliary variable, being a scalar-valued number, is computed by a well-defined explicit formula, which guarantees the positivity of its computed values. It is observed that the current method can produce accurate simulation results at large (or fairly large) time step sizes for the incompressible Navier-Stokes equations. The impact of the periodic coefficient-matrix update on the overall cost of the method is observed to be small in typical numerical simulations. Several flow problems have been simulated to demonstrate the accuracy and performance of the method developed herein.
141 - R. M. Kiehn 2007
The concept of continuous topological evolution, based upon Cartans methods of exterior differential systems, is used to develop a topological theory of non-equilibrium thermodynamics, within which there exist processes that exhibit continuous topological change and thermodynamic irreversibility. The technique furnishes a universal, topological foundation for the partial differential equations of hydrodynamics and electrodynamics; the technique does not depend upon a metric, connection or a variational principle. Certain topological classes of solutions to the Navier-Stokes equations are shown to be equivalent to thermodynamically irreversible processes.
We consider a computational model for complex-fluid-solid interaction based on a diffuse-interface model for the complex fluid and a hyperelastic-material model for the solid. The diffuse-interface complex-fluid model is described by the incompressible Navier-Stokes-Cahn-Hilliard equations with preferential-wetting boundary conditions at the fluid-solid interface. The corresponding fluid traction on the interface includes a capillary-stress contribution, and the dynamic interface condition comprises the traction exerted by the non-uniform fluid-solid surface tension. We present a weak formulation of the aggregated complex-fluid-solid-interaction problem, based on an Arbitrary-Lagrangian-Eulerian formulation of the Navier-Stokes-Cahn-Hilliard equations and a proper reformulation of the complex-fluid traction and the fluid-solid surface tension. To validate the presented complex-fluid-solid-interaction model, we present numerical results and conduct a comparison to experimental data for a droplet on a soft substrate.
The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated to the Ginzburg-Landau free energy with physically relevant logarithmic potential. This model is studied in bounded smooth domain in R^d, d=2 and d=3, and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak solutions and the existence and uniqueness of global strong solutions originating from an initial velocity u_0 in V, namely u_0 in H_0^1 such that div u_0=0. In addition, we prove further regularity properties and the validity of the instantaneous separation property. In a three-dimensional domain, we show the existence and uniqueness of local strong solutions with initial velocity u_0 in V.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا