Do you want to publish a course? Click here

The First Simultaneous 3.5 and 1.3mm Polarimetric Survey of Active Galactic Nuclei in the Northern Sky

331   0   0.0 ( 0 )
 Added by Ivan Agudo
 Publication date 2014
  fields Physics
and research's language is English
 Authors I. Agudo




Ask ChatGPT about the research

Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.



rate research

Read More

This is the fourth paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGN) identified in the ROSAT All-Sky Survey (RASS) and Sloan Digital Sky Survey (SDSS). In this paper we investigate the cause of the X-ray luminosity dependence of the clustering of broad-line, luminous AGN at 0.16<z<0.36. We fit the H-alpha line profile in the SDSS spectra for all X-ray and optically-selected broad-line AGN, determine the mass of the super-massive black hole (SMBH), M_BH, and infer the accretion rate relative to Eddington (L/L_EDD). Since M_BH and L/L_EDD are correlated, we create AGN subsamples in one parameter while maintaining the same distribution in the other parameter. In both the X-ray and optically-selected AGN samples we detect a weak clustering dependence with M_BH and no statistically significant dependence on L/L_EDD. We find a difference of up to 2.7sigma when comparing the objects that belong to the 30% least and 30% most massive M_BH subsamples, in that luminous broad-line AGN with more massive black holes reside in more massive parent dark matter halos at these redshifts. These results provide evidence that higher accretion rates in AGN do not necessarily require dense galaxy environments in which more galaxy mergers and interactions are expected to channel large amounts of gas onto the SMBH. We also present semi-analytic models which predict a positive M_DMH dependence on M_BH, which is most prominent at M_BH ~ 10^{8-9} M_SUN.
We report on the first phase of our study of cloud irradiation. We study irradiation by means of numerical, two-dimensional time-dependent radiation-hydrodynamic simulations of a cloud irradiated by a strong radiation. We adopt a very simple treatment of the opacity, neglect photoionization and gravity, and instead focus on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole instead they undergo a very rapid and major evolution in its shape, size and physical properties. In particular, the cloud and its remnants become optical thin within less than one sound crossing time and before they can travel over a significant distance (a distance of a few radii of the initial cloud). We also found that a cloud can be accelerated as a whole under quite extreme conditions, e.g., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small and unless the cloud is optically thin the cloud quickly changes its size and shape. We discuss implications for the modelling and interpetation broad line regions of active galactic nuclei.
Active Galactic Nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different flavours in the literature that now comprise a complex and confusing AGN zoo. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN, and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their big picture through observations in each electromagnetic band from radio to gamma-rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.
153 - K.I. Caputi 2014
The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for the study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that it should be possible to address with forthcoming IR telescopes.
The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (AGN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا