Do you want to publish a course? Click here

The spatial clustering of ROSAT All-Sky Survey Active Galactic Nuclei IV. More massive black holes reside in more massive dark matter halos

122   0   0.0 ( 0 )
 Added by Mirko Krumpe
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is the fourth paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGN) identified in the ROSAT All-Sky Survey (RASS) and Sloan Digital Sky Survey (SDSS). In this paper we investigate the cause of the X-ray luminosity dependence of the clustering of broad-line, luminous AGN at 0.16<z<0.36. We fit the H-alpha line profile in the SDSS spectra for all X-ray and optically-selected broad-line AGN, determine the mass of the super-massive black hole (SMBH), M_BH, and infer the accretion rate relative to Eddington (L/L_EDD). Since M_BH and L/L_EDD are correlated, we create AGN subsamples in one parameter while maintaining the same distribution in the other parameter. In both the X-ray and optically-selected AGN samples we detect a weak clustering dependence with M_BH and no statistically significant dependence on L/L_EDD. We find a difference of up to 2.7sigma when comparing the objects that belong to the 30% least and 30% most massive M_BH subsamples, in that luminous broad-line AGN with more massive black holes reside in more massive parent dark matter halos at these redshifts. These results provide evidence that higher accretion rates in AGN do not necessarily require dense galaxy environments in which more galaxy mergers and interactions are expected to channel large amounts of gas onto the SMBH. We also present semi-analytic models which predict a positive M_DMH dependence on M_BH, which is most prominent at M_BH ~ 10^{8-9} M_SUN.



rate research

Read More

The population of massive black holes (MBHs) in dwarf galaxies is elusive, but fundamentally important to understand the coevolution of black holes with their hosts and the formation of the first collapsed objects in the Universe. While some progress was made in determining the X-ray detected fraction of MBHs in dwarfs, with typical values ranging from $0%$ to $6%$, their overall active fraction, ${cal A}$, is still largely unconstrained. Here, we develop a theoretical model to predict the multiwavelength active fraction of MBHs in dwarf galaxies starting from first principles and based on the physical properties of the host, namely, its stellar mass and angular momentum content. We find multiwavelength active fractions for MBHs, accreting at typically low rates, ranging from $5%$ to $22%$, and increasing with the stellar mass of the host as ${cal A} sim(log_{10}M_{star})^{4.5}$. If dwarfs are characterized by low-metallicity environments, the active fraction may reach $sim 30%$ for the most massive hosts. For galaxies with stellar mass in the range $10^7<M_{star} [M_{odot}]<10^{10}$, our predictions are in agreement with occupation fractions derived from simulations and semi-analytical models. Additionally, we provide a fitting formula to predict the probability of finding an active MBH in a dwarf galaxy from observationally derived data. This model will be instrumental to guide future observational efforts to find MBHs in dwarfs. The James Webb Space Telescope, in particular, will play a crucial role in detecting MBHs in dwarfs, possibly uncovering active fractions $sim 3$ times larger than current X-ray surveys.
313 - I. Agudo 2014
Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive halos present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z=3 and z=2 respectively.
69 - Andres Escala 2020
We explore here an scenario for massive black hole formation driven by stellar collisions in galactic nuclei, proposing a new formation regime of global instability in nuclear stellar clusters triggered by runaway stellar collisions. Using order of magnitude estimations, we show that observed nuclear stellar clusters avoid the regime where stellar collisions are dynamically relevant over the whole system, while resolved detections of massive black holes are well into such collision-dominated regime. We interpret this result in terms of massive black holes and nuclear stellar clusters being different evolutionary paths of a common formation mechanism, unified under the standard terminology of being both central massive objects. We propose a formation scenario where central massive objects more massive than $rm sim 10^8 , Msun$, which also have relaxation times longer that their collision times, will be too dense (in virial equilibrium) to be globally stable against stellar collisions and most of its mass will collapse towards the formation of a massive black hole. Contrarily, this will only be the case at the core of less dense central massive objects leading to the formation of black holes with much lower black hole efficiencies $rm epsilon_{BH} = frac{M_{BH}}{M_{CMO}}$, with these efficiencies $rm epsilon_{BH}$ drastically growing for central massive objects more massive than $rm sim 10^7 , Msun$, approaching unity around $rm M_{CMO} sim 10^8 , Msun$. We show that the proposed scenario successfully explains the relative trends observed in the masses, efficiencies, and scaling relations between massive black holes and nuclear stellar clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا