Do you want to publish a course? Click here

Active Galactic Nuclei: whats in a name?

87   0   0.0 ( 0 )
 Added by Paolo Padovani
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Active Galactic Nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different flavours in the literature that now comprise a complex and confusing AGN zoo. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN, and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their big picture through observations in each electromagnetic band from radio to gamma-rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.



rate research

Read More

The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (AGN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
185 - Pu Du , Jian-Min Wang , Chen Hu 2013
The metallicity of active galactic nuclei (AGNs), which can be measured by emission line ratios in their broad and narrow line regions (BLRs and NLRs), provides invaluable information about the physical connection between the different components of AGNs. From the archival databases of the International Ultraviolet Explorer, the Hubble Space Telescope and the Sloan Digital Sky Survey, we have assembled the largest sample available of AGNs which have adequate spectra in both the optical and ultraviolet bands to measure the narrow line ratio [N II]/H{alpha} and also, in the same objects, the broad-line N V/C IV ratio. These permit the measurement of the metallicities in the NLRs and BLRs in the same objects. We find that neither the BLR nor the NLR metallicity correlate with black hole masses or Eddington ratios, but there is a strong correlation between NLR and BLR metallicities. This metallicity correlation implies that outflows from BLRs carry metal-rich gas to NLRs at characteristic radial distances of ~ 1.0 kiloparsec. This chemical connection provides evidence for a kinetic feedback of the outflows to their hosts. Metals transported into the NLR enhance the cooling of the ISM in this region, leading to local star formation after the AGNs turn to narrow line LINERs. This post-AGN star formation is predicted to be observable as an excess continuum emission from the host galaxies in the near infrared and ultraviolet, which needs to be further explored.
We report on the first phase of our study of cloud irradiation. We study irradiation by means of numerical, two-dimensional time-dependent radiation-hydrodynamic simulations of a cloud irradiated by a strong radiation. We adopt a very simple treatment of the opacity, neglect photoionization and gravity, and instead focus on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole instead they undergo a very rapid and major evolution in its shape, size and physical properties. In particular, the cloud and its remnants become optical thin within less than one sound crossing time and before they can travel over a significant distance (a distance of a few radii of the initial cloud). We also found that a cloud can be accelerated as a whole under quite extreme conditions, e.g., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small and unless the cloud is optically thin the cloud quickly changes its size and shape. We discuss implications for the modelling and interpetation broad line regions of active galactic nuclei.
150 - K.I. Caputi 2014
The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for the study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that it should be possible to address with forthcoming IR telescopes.
Nearly every massive galaxy harbors a supermassive black hole (SMBH) in its nucleus. SMBH masses are millions to billions $M_{odot}$, and they correlate with properties of spheroids of their host galaxies. While the SMBH growth channels, mergers and gas accretion, are well established, their origin remains uncertain: they could have either emerged from massive seeds ($10^5-10^6 M_{odot}$) formed by direct collapse of gas clouds in the early Universe or from smaller ($100 M_{odot}$) black holes, end-products of first stars. The latter channel would leave behind numerous intermediate mass black holes (IMBHs, $10^2-10^5 M_{odot}$). Although many IMBH candidates have been identified, none is accepted as definitive, thus their very existence is still debated. Using data mining in wide-field sky surveys and applying dedicated analysis to archival and follow-up optical spectra, we identified a sample of 305 IMBH candidates having masses $3times10^4<M_{mathrm{BH}}<2times10^5 M_{odot}$, which reside in galaxy centers and are accreting gas that creates characteristic signatures of a type-I active galactic nucleus (AGN). We confirmed the AGN nature of ten sources (including five previously known objects which validate our method) by detecting the X-ray emission from their accretion discs, thus defining the first bona fide sample of IMBHs in galactic nuclei. All IMBH host galaxies possess small bulges and sit on the low-mass extension of the $M_{mathrm{BH}}-M_{mathrm{bulge}}$ scaling relation suggesting that they must have experienced very few if any major mergers over their lifetime. The very existence of nuclear IMBHs supports the stellar mass seed scenario of the massive black hole formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا