No Arabic abstract
Differences in chemical composition among main sequence stars within a given cluster are probably due to differences in their masses and other effects such as radiative diffusion, magnetic field, rotation, mixing mechanisms, mass loss, accretion and multiplicity. The early type main-sequence members of open clusters of different ages allow to study the competition between radiative diffusion and mixing mechanisms. We have analysed low and high resolution spectra covering the spectral range 4500 - 5840 Angs. of late B, A, and F type members of the open Cluster M6 (age about 100 Myr). The spectra were obtained using the FLAMES/GIRAFFE spectrograph mounted at UT2, the 8 meter class VLT telescope. The effective temperatures, surface gravities and microturbulent velocities of the stars were derived using both photometric and spectral methods. We have also performed a chemical abundance analysis using synthetic spectra. The abundances of the elements were determined for C, O, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Y, Ba. The star-to-star variations in elemental abundances among the members of the open cluster M6 were discussed.
It is unclear whether chemically peculiar stars of the upper main sequence represent a class completely distinct from normal A-type stars, or whether there exists a continuous transition from the normal to the most peculiar late F- to early B-type stars. A systematic abundance analysis of open cluster early-type stars would help to relate the observed differences of the chemical abundances of the photospheres to other stellar characteristics, without being concerned by possible different original chemical composition. Furthermore, if a continuous transition region from the very peculiar to the so called normal A-F stars exists, it should be possible to detect objects with mild peculiarities. As a first step of a larger project, an abundance analysis of 5 F-A type stars in the young cluster IC2391 was performed using high resolution spectra obtained with the UVES instrument of the ESO VLT. Our targets seem to follow a general abundance pattern: close to solar abundance of the light elements and iron peak elements, heavy elements are slightly overabundant with respect to the sun, similar to what was found in previous studies of normal field A-type stars of the galactic plane. We detected a weakly chemically peculiar star, HD74044. Its element pattern contains characteristics of CP1 as well as CP2 stars, enhanced abundances of iron peak elements and also higher abundances of Sc, Y, Ba and Ce. We did not detect a magnetic field in this star (detection limit was 2kG). We also studied the star SHJM2, proposed as a pre-main sequence object in previous works. Using spectroscopy we found a high surface gravity, which suggests that the star is very close to the ZAMS.
We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 um photometry for 37 members of the ~100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3sigma uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs and two G dwarfs. The most significant linkage between 24 um excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 um excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1 -- NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 um excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between V-Ks color and Ks-[24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.
We perform an asteroseismic investigation of giant stars in the field of NGC 6791 with previous indications of atypical evolution. The analysis makes use of observations from Kepler and Gaia in combination with ground-based photometry, a literature radial-velocity study, and measurements of eclipsing binaries in the cluster. We derive mass, radius, effective temperature, evolutionary stage and apparent distance modulus of each target. Among the investigated cluster giants we find clear evidence of overmassive and undermassive members, and non-members with strong hints of potential past membership. Our results indicate that about 10% of the red giants in the cluster have experienced mass-transfer or a merger. High resolution, high-S/N spectroscopic follow-up could confirm potential past membership of the non-members, and reveal whether certain element abundances might expose the non-standard evolution of overmassive and undermassive stars. If so, field stars of similar type could be identified as what they are, i.e. over- or undermassive stars, and not mistakenly classified as younger or older than they are.
Earlier measurements of the masses and radii of the detached eclipsing binary V20 in the open cluster NGC 6791 were accurate enough to demonstrate that there are significant differences between current stellar models. Here we improve on those results and add measurements of two additional detached eclipsing binaries, the cluster members V18 and V80. The enlarged sample sets much tighter constraints on the properties of stellar models than has hitherto been possible, thereby improving both the accuracy and precision of the cluster age. We employed (i) high-resolution UVES spectroscopy of V18, V20 and V80 to determine their spectroscopic effective temperatures, [Fe/H] values, and spectroscopic orbital elements, and (ii) time-series photometry from the Nordic Optical Telescope to obtain the photometric elements. The masses and radii of the V18 and V20 components are found to high accuracy, with errors on the masses in the range 0.27-0.36% and errors on the radii in the range 0.61-0.92%. V80 is found to be magnetically active, and more observations are needed to determine its parameters accurately. The metallicity of NGC 6791 is measured from disentangled spectra of the binaries and a few single stars to be [Fe/H]= +0.29 pm 0.03 (random) pm 0.07 (systematic). The cluster reddening and apparent distance modulus are found to be E(B - V) = 0.160 pm 0.025 and (m - M)V = 13.51 pm 0.06 . A first model comparison shows that we can constrain the helium content of the NGC 6791 stars, and thus reach a more accurate age than previously possible. It may be possible to constrain additional parameters, in particular the C, N, and O abundances. This will be investigated in paper II.
Lithium is a fundamental element for studying the mixing mechanisms acting in the stellar interiors, for understanding the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. The study of Li in stars of open clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models and permits us to trace its galactic evolution. The OC NGC 2243 is particularly interesting because of its low metallicity ([Fe/H]=$-0.54 pm0.10$ dex). We measure the iron and lithium abundance in stars of the metal-poor OC NGC 2243. The first aim is to determine whether the Li dip extends to such low metallicities, the second is to compare the results of our Li analysis in this OC with those present in 47 Tuc, a globular cluster of similar metallicity. We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the ESO VLT 8.2m telescope. Lithium abundance was derived through line equivalent widths and the OSMARCS atmosphere models. We determine a Li dip center of 1.06 $M_odot$, which is much smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is $log n{rm (Li)}=2.70$ dex, which is substantially higher than that observed in 47 Tuc. We estimated an iron abundance of [Fe/H]=$-0.54 pm0.10$ dex for NGC 2243, which is similar (within the errors) to previous findings. The [$ alpha$/Fe] content ranges from $0.00pm0.14$ for Ca to $0.20pm0.22$ for Ti, which is low when compared to thick disk stars and to Pop II stars, but compatible with thin disk objects. We found a mean radial velocity of 61.9 $pm$ 0.8 kms for the cluster.