Do you want to publish a course? Click here

Asteroseismology of overmassive, undermassive, and potential past members of the open cluster NGC6791

123   0   0.0 ( 0 )
 Added by Karsten Brogaard
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform an asteroseismic investigation of giant stars in the field of NGC 6791 with previous indications of atypical evolution. The analysis makes use of observations from Kepler and Gaia in combination with ground-based photometry, a literature radial-velocity study, and measurements of eclipsing binaries in the cluster. We derive mass, radius, effective temperature, evolutionary stage and apparent distance modulus of each target. Among the investigated cluster giants we find clear evidence of overmassive and undermassive members, and non-members with strong hints of potential past membership. Our results indicate that about 10% of the red giants in the cluster have experienced mass-transfer or a merger. High resolution, high-S/N spectroscopic follow-up could confirm potential past membership of the non-members, and reveal whether certain element abundances might expose the non-standard evolution of overmassive and undermassive stars. If so, field stars of similar type could be identified as what they are, i.e. over- or undermassive stars, and not mistakenly classified as younger or older than they are.



rate research

Read More

133 - J. R. Stauffer 2010
We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 um photometry for 37 members of the ~100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3sigma uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs and two G dwarfs. The most significant linkage between 24 um excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 um excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1 -- NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 um excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between V-Ks color and Ks-[24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.
Differences in chemical composition among main sequence stars within a given cluster are probably due to differences in their masses and other effects such as radiative diffusion, magnetic field, rotation, mixing mechanisms, mass loss, accretion and multiplicity. The early type main-sequence members of open clusters of different ages allow to study the competition between radiative diffusion and mixing mechanisms. We have analysed low and high resolution spectra covering the spectral range 4500 - 5840 Angs. of late B, A, and F type members of the open Cluster M6 (age about 100 Myr). The spectra were obtained using the FLAMES/GIRAFFE spectrograph mounted at UT2, the 8 meter class VLT telescope. The effective temperatures, surface gravities and microturbulent velocities of the stars were derived using both photometric and spectral methods. We have also performed a chemical abundance analysis using synthetic spectra. The abundances of the elements were determined for C, O, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Y, Ba. The star-to-star variations in elemental abundances among the members of the open cluster M6 were discussed.
We present the first X-ray study of NGC6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to Lx ~ 1e30 erg/s (0.3-7 keV). We detect 86 sources within 8 arcmin of the cluster center, including 59 inside the half-mass radius. We identify twenty sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and HeII emission lines in its optical spectrum; this is the first X-ray--selected CV confirmed in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC6791 are primordial. We compare the X-ray properties of NGC6791 with those of a few old open (NGC6819, M67) and globular clusters (47Tuc, NGC6397). It is puzzling that the number of ABs brighter than 1e30 erg/s normalized by cluster mass is lower in NGC6791 than in M67 by a factor ~3 to 7. CVs, ABs, and sub-subgiants brighter than 1e30 erg/s are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e. X-ray--emitting) binaries.
149 - S. Saesen , M. Briquet , C. Aerts 2013
Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance and chemical composition. We present an observational asteroseismology study based on the discovery of numerous multi-periodic and mono-periodic B-stars in the open cluster NGC 884. We describe a thorough investigation of the pulsational properties of all B-type stars in the cluster. Overall, our detailed frequency analysis resulted in 115 detected frequencies in 65 stars. We found 36 mono-periodic, 16 bi-periodic, 10 tri-periodic, and 2 quadru-periodic stars and one star with 9 independent frequencies. We also derived the amplitudes and phases of all detected frequencies in the U, B, V and I filter, if available. We achieved unambiguous identifications of the mode degree for twelve of the detected frequencies in nine of the pulsators. Imposing the identified degrees and measured frequencies of the radial, dipole and quadrupole modes of five pulsators led to a seismic cluster age estimate of log(age/yr) =7.12-7.28 from a comparison with stellar models. Our study is a proof-of-concept for and illustrates the current status of ensemble asteroseismology of a young open cluster.
We present the results of a survey of the Coma Berenices open star cluster (Melotte 111), undertaken using proper motions from the USNO-B1.0 and photometry from the 2MASS Point Source catalogues. We have identified 60 new candidate members with masses in the range 1.007<M<$0.269M_solar. For each we have estimated a membership probability by extracting control clusters from the proper motion vector diagram. All 60 are found to have greater than 60 per cent probability of being clusters more than doubling the number of known cluster members. The new luminosity function for the cluster peaks at bright magnitudes, but is rising at K~12, indicating that it is likely lower mass members may exist. The mass function also supports this hypothesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا