No Arabic abstract
We compare methods to resum logarithms in event shape distributions as they have been used in perturbative QCD directly and in effective field theory. We demonstrate that they are equivalent. In showing this equivalence, we are able to put standard soft-collinear effective theory (SCET) formulae for cross sections in momentum space into a novel form more directly comparable with standard QCD formulae, and endow the QCD formulae with dependence on separated hard, jet, and soft scales, providing potential ways to improve estimates of theoretical uncertainty. We show how to compute cross sections in momentum space to keep them as accurate as the corresponding expressions in Laplace space. In particular, we point out that that care is required in truncating differential distributions at N$^k$LL accuracy to ensure they match the accuracy of the corresponding cumulant or Laplace transform. We explain how to avoid such mismatches at N$^k$LL accuracy, and observe why they can also be avoided by working to N$^k$LL$$ accuracy.
We present a global fit to HERA data on the reduced cross section measured in electron-proton collisions in the region of small Bjorken-$x$: $xle x_0=10^{-2}$ and moderate to high values of the virtuality $Q^2<Q^2_{max}=650$ GeV$^2$. The main dynamical ingredients in the fits are two recently proposed improved BK equations for the description of the small-$x$ evolution of the dipole scattering amplitude. These two new equations provide an all-order resummation of double collinear logarithms that arise beyond leading logarithmic accuracy. We show that a very good description of data is possible in both cases, provided the parent dipole or smallest dipole prescriptions are employed for the running of the coupling.
The axion is much lighter than all other degrees of freedom introduced by the Peccei-Quinn mechanism to solve the strong CP problem. It is therefore natural to use an effective field theory (EFT) to describe its interactions. Loop processes calculated in the EFT may, however, explicitly depend on the ultraviolet cutoff. In general the UV cutoff is not uniquely defined, but the dimensionful couplings suggest to identify it with the Peccei-Quinn symmetry-breaking scale. An example are $K rightarrow pi + a$ decays that will soon be tested to improved precision in NA62 and KOTO and whose amplitude is dominated by the term logarithmically dependent on the cutoff. In this paper, we critically examine the adequacy of using such a naive EFT approach to study loop processes by comparing EFT calculations with ones performed in complete QCD axion models. In DFSZ models, for example, the cutoff is found to be set by additional Higgs degrees of freedom and to therefore be much closer to the electroweak scale than to the Peccei-Quinn scale. In fact, there are non-trivial requirements on axion models where the cutoff scale of loop processes is close to the Peccei-Quinn scale, such that the naive EFT result is reproduced. This suggests that the existence of a suitable UV embedding may impose restrictions on axion EFTs. We provide an explicit construction of a model with suitable fermion couplings and find promising prospects for NA62 and IAXO.
We present the computation of the direct photon production cross-section in perturbative QCD to all orders in the limit of high partonic center-of-mass energy. We show how the high-energy resummation can be performed consistently in the presence of a collinear singularity in the final state, we compare our results to the fixed order NLO cross-section in MSbar scheme, and we provide predictions at NNLO and beyond.
We hypothesize that the correct power counting for charmonia is in the parameter Lambda_QCD/m_c, but is not based purely on dimensional analysis (as is HQET). This power counting leads to predictions which differ from those resulting from the usual velocity power counting rules of NRQCD. In particular, we show that while Lambda_QCD/m_c power counting preserves the empirically verified predictions of spin symmetry in decays, it also leads to new predictions which include: A hierarchy between spin singlet and triplet octet matrix elements in the J/psi system. A quenching of the net polarization in production at large transverse momentum. No end point enhancement in radiative decays. We discuss explicit tests which can differentiate between the traditional and new theories of NRQCD.
Starting from the first renormalized factorization theorem for a process described at subleading power in soft-collinear effective theory, we discuss the resummation of Sudakov logarithms for such processes in renormalization-group improved perturbation theory. Endpoint divergences in convolution integrals, which arise generically beyond leading power, are regularized and removed by systematically rearranging the factorization formula. We study in detail the example of the $b$-quark induced $htogammagamma$ decay of the Higgs boson, for which we resum large logarithms of the ratio $M_h/m_b$ at next-to-leading logarithmic order. We also briefly discuss the related $ggto h$ amplitude.