Do you want to publish a course? Click here

Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

167   0   0.0 ( 0 )
 Added by Fatih Zighem
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The correlation between magnetic and structural properties of Co_{2} FeAl (CFA) thin films of different thickness (10 nm<d< 100 nm) grown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600lyxmathsym{textdegree}C has been studied. XRD measurements revealed an (011) out-of-plane texture growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field measured with an applied field along the easy axis direction and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-palne anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2



rate research

Read More

10 nm and 50 nm Co$_{2}$FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to the relation CFA(001)[110]//MgO(001)[100] epitaxial relation), respectively for CFA films grown on a Si and on a MgO substrate. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta) while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with $T_{a}$. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.3*10^-3 and 1.1*10^-3 for films of 50 nm thickness annealed at 615 {deg}C grown on MgO and on Si, respectively).
Co2FeAl (CFA) thin films with thickness varying from 10 nm to 115 nm have been deposited on MgO(001) substrates by magnetron sputtering and then capped by Ta or Cr layer. X-rays diffraction (XRD) revealed that the cubic $[001]$ CFA axis is normal to the substrate and that all the CFA films exhibit full epitaxial growth. The chemical order varies from the $B2$ phase to the $A2$ phase when decreasing the thickness. Magneto-optical Kerr effect (MOKE) and vibrating sample magnetometer measurements show that, depending on the field orientation, one or two-step switchings occur. Moreover, the films present a quadratic MOKE signal increasing with the CFA thickness, due to the increasing chemical order. Ferromagnetic resonance, MOKE transverse bias initial inverse susceptibility and torque (TBIIST) measurements reveal that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term. The fourfold anisotropy is in accord with the crystal structure of the samples and is correlated to the biaxial strain and to the chemical order present in the films. In addition, a large negative perpendicular uniaxial anisotropy is observed. Frequency and angular dependences of the FMR linewidth show two magnon scattering and mosaicity contributions, which depend on the CFA thickness. A Gilbert damping coefficient as low as 0.0011 is found.
We studied the structural and magnetic properties of FeC~thin films deposited by co-sputtering of Fe and C targets in a direct current magnetron sputtering (dcMS) process at a substrate temperature (Ts) of 300, 523 and 773,K. The structure and morphology was measured using x-ray diffraction (XRD), x-ray absorption near edge spectroscopy (XANES) at Fe $L$ and C $K$-edges and atomic/magnetic force microscopy (AFM, MFM), respectively. An ultrathin (3,nm) $^{57}$FeC~layer, placed between relatively thick FeC~layers was used to estimate Fe self-diffusion taking place during growth at different Ts~using depth profiling measurements. Such $^{57}$FeC~layer was also used for $^{57}$Fe conversion electron M{o}ssbauer spectroscopy (CEMS) and nuclear resonance scattering (NRS) measurements, yielding the magnetic structure of this ultrathin layer. We found from XRD measurements that the structure formed at low Ts~(300,K) is analogous to Fe-based amorphous alloy and at high Ts~(773,K), pre-dominantly a tifc~phase has been formed. Interestingly, at an intermediate Ts~(523,K), a clear presence of tefc~(along with tifc~and Fe) can be seen from the NRS spectra. The microstructure obtained from AFM images was found to be in agreement with XRD results. MFM images also agrees well with NRS results as the presence of multi-magnetic components can be clearly seen in the sample grown at Ts~= 523,K. The information about the hybridization between Fe and C, obtained from Fe $L$ and C $K$-edges XANES also supports the results obtained from other measurements. In essence, from this work, experimental realization of tefc~has been demonstrated. It can be anticipated that by further fine-tuning the deposition conditions, even single phase tefc~phase can be realized which hitherto remains an experimental challenge.
We correlate simultaneously recorded magnetotransport and spatially resolved magneto optical Kerr effect (MOKE) data in Co2FeAl Heusler compound thin films micropatterned into Hall bars. Room temperature MOKE images reveal the nucleation and propagation of domains in an externally applied magnetic field and are used to extract a macrospin corresponding to the mean magnetization direction in the Hall bar. The anisotropic magnetoresistance calculated using this macrospin is in excellent agreement with magnetoresistance measurements. This suggests that the magnetotransport in Heusler compounds can be adequately simulated using simple macrospin models, while the magnetoresistance contribution due to domain walls is of negligible importance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا