Do you want to publish a course? Click here

A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options

429   0   0.0 ( 0 )
 Added by A. Galichon
 Publication date 2014
  fields Financial
and research's language is English




Ask ChatGPT about the research

We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows us to recover previously known results about lookback options. In particular, our methodology induces a new proof of the optimality of Az{e}ma-Yor solution of the SEP for a certain class of lookback options. Unlike the SEP technique, our approach applies to a large class of exotics and is suitable for numerical approximation techniques.



rate research

Read More

The goal of this paper is to prove a result conjectured in Follmer and Schachermayer [FS07], even in slightly more general form. Suppose that S is a continuous semimartingale and satisfies a large deviations estimate; this is a particular growth condition on the mean-variance tradeoff process of S. We show that S then allows asymptotic exponential arbitrage with exponentially decaying failure probability, which is a strong and quantitative form of long-term arbitrage. In contrast to Follmer and Schachermayer [FS07], our result does not assume that S is a diffusion, nor does it need any ergodicity assumption.
We study the stochastic solution to a Cauchy problem for a degenerate parabolic equation arising from option pricing. When the diffusion coefficient of the underlying price process is locally Holder continuous with exponent $deltain (0, 1]$, the stochastic solution, which represents the price of a European option, is shown to be a classical solution to the Cauchy problem. This improves the standard requirement $deltage 1/2$. Uniqueness results, including a Feynman-Kac formula and a comparison theorem, are established without assuming the usual linear growth condition on the diffusion coefficient. When the stochastic solution is not smooth, it is characterized as the limit of an approximating smooth stochastic solutions. In deriving the main results, we discover a new, probabilistic proof of Kotanis criterion for martingality of a one-dimensional diffusion in natural scale.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
447 - G. Liang , T. Lyons , Z. Qian 2010
In Liang et al (2009), the current authors demonstrated that BSDEs can be reformulated as functional differential equations, and as an application, they solved BSDEs on general filtered probability spaces. In this paper the authors continue the study of functional differential equations and demonstrate how such approach can be used to solve FBSDEs. By this approach the equations can be solved in one direction altogether rather than in a forward and backward way. The solutions of FBSDEs are then employed to construct the weak solutions to a class of BSDE systems (not necessarily scalar) with quadratic growth, by a nonlinear version of Girsanovs transformation. As the solving procedure is constructive, the authors not only obtain the existence and uniqueness theorem, but also really work out the solutions to such class of BSDE systems with quadratic growth. Finally an optimal portfolio problem in incomplete markets is solved based on the functional differential equation approach and the nonlinear Girsanovs transformation.
We study two-dimensional stochastic differential equations (SDEs) of McKean--Vlasov type in which the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. Such SDEs arise when one tries to invert the Markovian projection developed by Gyongy (1986), typically to produce an It^o process with the fixed-time marginal distributions of a given one-dimensional diffusion but richer dynamical features. We prove the strong existence of stationary solutions for these SDEs, as well as their strong uniqueness in an important special case. Variants of the SDEs discussed in this paper enjoy frequent application in the calibration of local stochastic volatility models in finance, despite the very limited theoretical understanding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا