Do you want to publish a course? Click here

A Functional Approach to FBSDEs and Its Application in Optimal Portfolios

489   0   0.0 ( 0 )
 Added by Gechun Liang
 Publication date 2010
  fields Financial
and research's language is English




Ask ChatGPT about the research

In Liang et al (2009), the current authors demonstrated that BSDEs can be reformulated as functional differential equations, and as an application, they solved BSDEs on general filtered probability spaces. In this paper the authors continue the study of functional differential equations and demonstrate how such approach can be used to solve FBSDEs. By this approach the equations can be solved in one direction altogether rather than in a forward and backward way. The solutions of FBSDEs are then employed to construct the weak solutions to a class of BSDE systems (not necessarily scalar) with quadratic growth, by a nonlinear version of Girsanovs transformation. As the solving procedure is constructive, the authors not only obtain the existence and uniqueness theorem, but also really work out the solutions to such class of BSDE systems with quadratic growth. Finally an optimal portfolio problem in incomplete markets is solved based on the functional differential equation approach and the nonlinear Girsanovs transformation.



rate research

Read More

The presence of non linear instruments is responsible for the emergence of non Gaussian features in the price changes distribution of realistic portfolios, even for Normally distributed risk factors. This is especially true for the benchmark Delta Gamma Normal model, which in general exhibits exponentially damped power law tails. We show how the knowledge of the model characteristic function leads to Fourier representations for two standard risk measures, the Value at Risk and the Expected Shortfall, and for their sensitivities with respect to the model parameters. We detail the numerical implementation of our formulae and we emphasizes the reliability and efficiency of our results in comparison with Monte Carlo simulation.
We revisit the dividend payment problem in the dual model of Avanzi et al. ([2], [1], and [3]). Using the fluctuation theory of spectrally positive L{e}vy processes, we give a short exposition in which we show the optimality of barrier strategies for all such L{e}vy processes. Moreover, we characterize the optimal barrier using the functional inverse of a scale function. We also consider the capital injection problem of [3] and show that its value function has a very similar form to the one in which the horizon is the time of ruin.
Using Dupires notion of vertical derivative, we provide a functional (path-dependent) extension of the It^os formula of Gozzi and Russo (2006) that applies to C^{0,1}-functions of continuous weak Dirichlet processes. It is motivated and illustrated by its applications to the hedging or superhedging problems of path-dependent options in mathematical finance, in particular in the case of model uncertainty
We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows us to recover previously known results about lookback options. In particular, our methodology induces a new proof of the optimality of Az{e}ma-Yor solution of the SEP for a certain class of lookback options. Unlike the SEP technique, our approach applies to a large class of exotics and is suitable for numerical approximation techniques.
139 - Christian Leonard 2007
A probabilistic method for solving the Monge-Kantorovich mass transport problem on $R^d$ is introduced. A system of empirical measures of independent particles is built in such a way that it obeys a doubly indexed large deviation principle with an optimal transport cost as its rate function. As a consequence, new approximation results for the optimal cost function and the optimal transport plans are derived. They follow from the Gamma-convergence of a sequence of normalized relative entropies toward the optimal transport cost. A wide class of cost functions including the standard power cost functions $|x-y|^p$ enter this framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا